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Abstract

A growing body of research is aimed at decoding human speech
from neural signals captured by intracranial electrodes. Most
prior works with high decoding quality can only work with elec-
trodes on a 2D grid (i.e., Electrocorticographic or ECoG ar-
ray) and data from a single patient. Here we desigh a deep-
learning model that accommodates surface (ECoG) and depth
(stereotactic EEG or sEEG) electrodes from multiple partici-
pants with large variability in electrode placements. The pro-
posed novel transformer-based model named SwinTW can work
with arbitrarily positioned electrodes. We train subject-specific
and subject-agnostic models exploiting data from multiple par-
ticipants. The subject-specific models using only low-density
ECoG achieved high decoding performance, outperforming our
previous ResNet model [1]. Incorporating additional strip and
depth electrodes led to further improvement. For participants
with only sEEG electrodes, subject-specific models still enjoy
comparable performance.The subject-agnostic models gener-
alized well to unseen participants through a cross-validation
study. The proposed SwinTW decoder enables future speech
neuroprostheses to utilize any electrode placement that is clin-
ically optimal or feasible for a particular participant, including
using depth electrodes, which are more routinely implanted in
chronic neurosurgical procedures. Importantly, the generaliz-
ability of the multi-patient models suggests the exciting pos-
sibility of developing speech neuroprostheses for people with
speech disability without relying on their own neural data for
training.
Keywords: Neural Speech Decoding; Electrocorticographic (ECoG);
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Introduction

Brain-related speech disability, which can be caused by stroke, in-
jury, or tumor [2, 3], can seriously decrease a patient’s quality of
life. There has been growing interest in developing approaches to
directly decode human speech from the neural signals recorded us-
ing intracranial electrodes, for future adoption as a Brain-Computer
Interface to allow patients with speech disabilities to communicate
[4, 5, 6].

Recent studies have explored the use of RNNs, wavenet vocoders,
GANSs, and HUBERT synthesizers for neural speech decoding, and
their effectiveness varies regarding intelligibility and fidelity [7, 8, 9,
10, 11]. We have reported speech decoding with high correlation
with actual speech spectrograms for 43 participants with low-density
ECoG and 5 participants with hybrid density ECoG [12, 1]. Our de-
coding pipeline consists of an ECoG Decoder and a Speech Syn-
thesizer, with the ECoG Decoder utilizing ResNet [13] and 3D Swin
Transformer [14] architectures. Despite these advances, the applica-
tion to non-grid electrode configurations remains challenging due to
the dependency of prior approaches on spatial convolutions and po-
sitional embeddings specific to grid indices [1, 12, 15]. Additionally,
sEEG, which uses depth electrodes with minimal cranial disruption, is
compatible with DBS methods for potential long-term use in speech
neuroprosthetics [16, 17, 18]. It also requires a non-grid-based neu-
ral decoder. Previous research on decoding from sEEG data has
produced relatively low decoding accuracy[19, 20, 21, 22].

The reliance of fully connected models on specific electrode place-
ments reduces a neural decoder’s generalizability across patients,
necessitating tailored datasets per subject and limiting scalability

[7, 8, 23]. Our research introduces the Swin transformer with tempo-
ral windowing (SwinTW), a novel transformer-based Neural Decoder
that does not depend on grid structures. By utilizing the anatomical
locations of electrodes rather than grid indices, SwinTW surpasses
both ResNet and 3D Swin Transformer in performance on grid elec-
trodes, as well as enhancing performance with off-grid electrodes [1].
Significantly, the SwinTW model, trained on data from multiple par-
ticipants, generalizes effectively to new subjects.

Methodology

The study includes 52 native English-speaking subjects (43 subjects
with ECoG electrodes and 9 subjects with only sEEG electrodes)
with refractory epilepsy[1]. Participants vocalized 50 target words
in response to prompts across five tasks: Auditory Repetition, Au-
ditory Naming, Sentence Completion, Visual Reading, and Picture
Naming. This protocol yielded 400 speech production trials per par-
ticipant with an average duration of 500ms. Electrode configurations
included 8x8 ECoG grids with additional strips or depth electrodes as
necessary. Preprocessing involved isolating the high gamma band
(70-150 Hz). Data exclusion criteria are applied to any channels dis-
playing artifacts or epileptiform activity. For subject-specific models,
350 trials were used for training models, and 50 were reserved for
testing across the tasks.

Our neural speech decoding framework adopts a two-step training
approach, outlined in [1] and illustrated in Fig.1. Initially, a Speech
Encoder extracts temporal speech parameters from input spectro-
grams, followed by a Speech Synthesizer that reconstructs these
parameters into spectrograms. Subsequently, a Neural Decoder
predicts these speech parameters from neural signals, synthesizing
them into speech spectrograms.

We introduce the Swin Transformer with Temporal Windowing
(SwinTW) as a novel Neural Decoder capable of processing sig-
nals from arbitrarily positioned electrodes. This advancement allows
SwinTW to handle diverse electrode configurations, effectively de-
coding speech from neural signals across various setups as shown
in Fig.1. SwinTW significantly departs from traditional grid-based de-
coders by temporally partitioning electrode signals into tokens. Given
an ECoG signal with the shape of T x N (T: number of frames, N:
number of electrodes), for each electrode, the SwinTW partitions the
temporal sequence of neural activity into % patches with patch size
W. The temporal patch partition generates % X N patches in total,
and a patch embedding layer is applied to each patch to generate
% X N tokens with the latent dimension of C. Instead of grid-based
spatial positional biases [24], SwinTW utilizes the anatomical loca-
tions of the electrodes, including their coordinates on the standard-
ized Montreal Neurological Institute (MNI) brain map and their brain
regions to assign relative positional biases for the electrodes. This
approach enables SwinTW to learn embeddings for different brain
regions, improving neural decoding accuracy across electrode place-
ments and brain anatomies.

SwinTW supports neural speech decoding regardless of electrode
placement. This model can be trained on data from multiple sub-
jects and applied across different individuals, as shown in Fig.1. It
exploits neural signals and electrodes’ positional information to gen-
erate speech parameters. During training, a reference loss is cal-
culated by comparing these parameters to those derived from the
corresponding spectrograms. These parameters are then used by
patient-specific speech synthesizers (with parameters learned only
from audio signals) to produce speech spectrograms. The frame-
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Figure 1: Neural Speech Decoding with SwinTW. Step 1 involves Speech-to-Speech Training using a subject-specific Speech Encoder to
generate speech parameters from original spectrograms. Step 2 employs the SwinTW Neural Decoder which utilizes transformer blocks with
spatial-temporal attention and temporal windowing for feature extraction. It integrates each participant’s neural data and electrode locations
(MNI coordinates and ROI index) to predict speech parameters, which are then processed by a participant-specific Speech Synthesizer to

reconstruct the speech spectrogram.

work also includes learning embeddings for different brain regions
and relative attention biases between two electrodes based on their
MNI coordinates and region embeddings, thereby increasing the de-
coder’s adaptability to diverse electrode placements.

Results and Discussion

We first evaluate SwinTW against the previous grid-based Neural De-
coders based on ResNet and 3D Swin Transformer architectures [1],
trained separately for each of the 43 participants using data from a
single 8x8 ECoG grid. SwinTW demonstrated superior performance
in terms of the Pearson Correlation Coefficient (PCC) between de-
coded and actual spectrograms, as shown in Fig.2a, underscoring
the importance of incorporating MNI coordinates and brain region
information of electrodes even when the electrodes are on a 2D grid.
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Figure 2: (a) Subject-specific models using 8 x 8 grid electrodes
across 43 participants; SwinTW has the highest PCC. (b) Subject-
specific SwinTW Neural Decoder using all electrodes outperforms
using only grid electrodes across 39 participants. sEEG-only de-
coding over 9 participants also indicates the SwinTW can achieve
promising speech decoding from SsEEG electrode data. (c) The de-
coding performance of the trained multi-subject model on participants
outside the training set shows the generalization ability of SwinTW
through five-fold cross-validation across 43 participants. Left, right,
and both indicate electrode placement on the corresponding brain
hemispheres.

Furthermore, for 39 participants with additional electrodes (strip
and depth electrodes), active electrodes were selected based on
signal variance criteria detailed in [25]. Leveraging these additional
electrodes (1 to 19 strip electrodes, 1 to 21 depth electrode per sub-
ject) along with the 64 grid electrodes, the subject-specific SwinTW
models achieved improved decoding accuracy, as shown in Fig.2b.
This capability to utilize diverse electrode types without requiring a

grid configuration allows for a more versatile application across differ-
ent participants. We further trained the SwinTW model on sEEG data
alone over 9 participants. Electrodes were selected following [25], re-
sulting in an electrode count ranging from 19 to 178 per participant.
As shown in Fig.2¢, the SwinTW model’'s sEEG-based decoding ex-
hibits promising results, with PCCs marginally reduced compared to
using ECoG electrodes.

Since SwinTW utilizes the brain locations of electrodes rather than
their positions on a 2D grid, a subject-agnostic model can be trained
with data from multiple participants. We assess the generalization
ability of the multi-subject SwinTW decoder on unseen participants
using a 5-fold cross-validation approach for male (N=20) and female
(N=23) participants, each with ECoG electrodes in either left or right
brain hemispheres. Participants were divided into five groups, each
sequentially serving as the test set while the decoder was trained on
the remaining four groups. Despite lower performance on test par-
ticipants compared to subject-specific models, the SwinTW decoder
demonstrated a respectable mean PCC of 0.765, indicating effective
generalization to new subjects shown in Fig.2c.

This study introduces the Swin Transformer with Temporal Win-
dowing (SwinTW), a novel Neural Decoder that overcomes the grid-
input constraints of traditional models like the 3D Swin Transformer
and ResNET by using the MNI coordinates and brain regions of elec-
trodes for generating positional biases in a two-step speech decoding
pipeline [1, 12]. SwinTW achieves a higher mean PCC than prede-
cessors like ResNet and 3D Swin Transformer on ECoG signals only.
SwinTW can effectively exploit neural signals captured by additional
electrodes, including strip, depth, and grid electrodes, and obtain
improved decoding accuracy with these additional electrodes. Us-
ing only sEEG data yields decoding performance comparable to that
achieved through ECoG data, conferring substantial clinical benefits
as outlined in the Introduction.

SwinTW's design facilitates effective training across multiple sub-
jects. lt is, to our knowledge, the first study demonstrating neural
speech decoding models trained across multiple participants and
generalized well to unseen participants. These results demonstrate
SwinTW’s capacity to handle diverse electrode setups and its po-
tential for speech decoding applications that do not require subject-
specific calibration.
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