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Abstract

Recent data suggest that the brain maintains Laplace
transformed neural timelines of the past and the planned
future. We apply a cognitive model that uses this rep-
resentation to explain canonical behavior patterns in in-
terval timing tasks. The model comprises three compo-
nents: 1. a population of exponentially decaying neurons
that encode the Laplace transform of past events at vari-
ous rates across neurons; 2. a weight matrix that stores
Hebbian associations of past events with the present; 3.
a population of exponentially ramping neurons at various
rates that encode the Laplace transform of the expected
future given the present. This model allows an agent to
continuously update memory and predicted future in re-
lation to the present moment as events unfold. Unlike
typical recurrent neural networks (RNNs) for timing tasks,
each component in our model maps to concrete cognitive
functions, which enables the agent to adjust and manip-
ulate a logarithmically compressed timeline to meet vari-
ous task demands.
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Introduction

The ability to track time has been studied extensively in human
and other animals, revealing remarkably consistent behavioral
patterns across species (Gibbon & Church, 1984; Lewis & Mi-
all, 2009). Early timing models focused on behavior (Gibbon,
1977); more recent computational neural models have used
recurrent neural networks (RNN) models that are difficult to
map to specific cognitive functions (Laje & Buonomano, 2013;
Beiran, Meirhaeghe, Sohn, Jazayeri, & Ostojic, 2023). Here
we present a cognitive model based on neural population data
that captures continuous timelines for past (Bright et al., 2020;
Tsao et al., 2018) and planned future action (Cao, Bright, &
Howard, 2024), while integrating previously established cog-
nitive models for timing and memory. The model is applied to
various timing tasks to explain canonical behavior patterns.

Temporal Model

The model is formalized in Howard, Esfahani, Le, and Seder-
berg (2023) where the authors provide an extensive discus-

sion of each components and potential applications. Below
we briefly describe each component in the context of interval
timing where an agent needs to learn event X is followed by
event Y after time T.
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Figure 1: a-c Neural representation observed when ani-
mals timed their actions for target interval duration (c); figure
adopted from Cao et al. (2024). a Neural population tracks
time since the start of interval. Each row represents normal-
ized firing where yellow indicates high firing and deep blue
indicates zero firing. ¢ neural population tracks time until the
end of interval. Plotted the same way as a. d-f Schematic
of the model that learns temporal relationship between two
events(e).d plots simulated neurons carrying a logarithmically
compressed Laplace timeline for past following a. f plots simu-
lated neurons carrying a logarithmically compressed Laplace
timeline for future following c.

Laplace Transform of Past Timeline F~ When X happens,
it is represented as a delta function and activate a population
of neurons at that moment where F,_, (s) = ¢**. Then each
neuron start to decay at each &t exponentially according to:
_ —sou(&) o—
F g (s) = e R (s) (1)

where the parameter a reflect the ratio of internal time flow
over external time flow. Because s takes an continuous spec-



trum of values sampled from geometric sequence, Eq.1 en-
codes a logarithmically compressed Laplace timeline of event
X in the past.

Hebbian Learning Stored in M The matrix M(s) stores as-
sociations from the past timeline for all events F~(s) to the
future timeline When time T elapsed since event X, event Y
occurs. The connection from X in the past to Y in the future
updates: pMj + (1 —p)F_r(s) where p controls the forget-
ting rate of previous trials. Note that M(s) does not just learn
to associate Y with X, but with X'in T time ago.

Laplace Transform of Future Timeline F*  We probe M(s)
with the present to generate inputs for the predicted future
timeline F (s). When X occurs again, it activate F* (s) for Y
via M(s) and start with initial activation copied from F,_(s) =
e~*T according to eq. 1. Then each neuron start to ramp up
according at rate of s:

F g (s) = @ FF(s) (@)
After applying the initial activation, we get F*(s) = /(7"
where ¢t = Y dta from the time X occurs again to now. Be-
cause F,"(s) for Y peaks when t = T, F,*(s) carries out a
logarithmically compressed future timeline for predicting Y.

Results

Below we add some simple decision mechanism to the model
for three interval timing tasks and report the simulation results.

Interval Reproduction Task

In an interval reproduction task, the agent observes interval T
marked by external stimuli and reproduces it by starting and
ending an action after T (Fig. 2a). An agent stores the tempo-
ral relationship between the start (X) and end (Y) in M(s) dur-
ing study. When starting reproducing the interval, the agent
probe M(s) with X', causing F (s) for Y’ to ramp up. The re-
sponse time (RT) is defined as the moment whenF* (s) neu-
rons peak, prompting agent to end the interval.

Scalar Property A key feature of interval reproduction is the
“Scalar Property”, where RT variance increases linearly with
interval length(Rakitin et al., 1998). We simulated RT for three
intervals (2,4, and 8) over 1000 trials each. For each trial, dis-
crepancy between internal and external time flows, a, is sam-
pled from the same Gaussian distribution (mean=1,SD=0.2).
Despite sampled from the same distribution, oo multiplies at
each time step in F*(s) and causes the errors to scales with
the interval (Fig. 2b,c).

Regression Effect The “Regression Effect”, where agents
overestimate short duration and underestimate long duration
occurs when the study interval varies for each trial (Henke
et al., 2021). We simulated RT for 500 trials with intervals
randomly chosen between 3 to 7. The model replicate this
effect with p, a forgetting parameter in M(s) that incorporate
an weighted average of past association between X and Y.
This biases the RT towards mean across trials (Fig. 2c).
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Figure 2: a Schematic of interval the reproduction task. An
agent timed their action to reproduce studied interval. b-c
Simulated response time distribution for three intervals plot-
ted at absolute time b and rescaled time ¢ from the model. d
Box plot of response time distribution as a function of study in-
terval. Diamond marks the population mean. e Schematic of
the interval bisection task. f Probability or response “long” as
a function of test interval length, simulated from the model. g
Schematic of time left task. h Probability of stay as a function
of inquiry time for different interval pairs of T and T /2.

Indifference Point in Interval Bisection Tasks

In interval bisection task, an agent learned to distinguish
between short and long intervals (Fig. 2e) and was tested
with intermediate lengths. Researchers found the point of
indifference—where agents respond 50/50-is the geometric
mean of the two trained intervals (Church & Deluty, 1977).

We model the task as a categorization decision using tem-
poral activities in F~ (s). The activities after shortF, _(s)and
long intervals Fl;ng(s) are stored as the category prototypes
An agent then calculate the Euclidean distance of F; (s) fora
test probe to the two prototypes and assign category accord-
ingly (Smith & Minda, 1998). Because s is sampled according
to geometric sequence, the point of equal-distant to the refer-
ences happens at the geometric mean, rather than arithmetic
mean of 2 and 8 (Fig. 2f).

Linear Time in Time-left task

In the Time-left task, an agent learns two intervals: A with
reward after T and B with reward after 7/2. During tests,
the agent choose between continuing A or switching to B at
different time ¢ during A. Researchers found the indifference
point scales with T, which was taken as evidence for linear
time perception (Gibbon & Church, 1981).

When B is presented, Our model tracks time left in A and
Bwith ;" (s) = e ") and F; (s) = e~*(7/20) respectively.
F*(s) ramps up as it gets closer to reward. Therefore we



.
assume that an agent choose stay if ?18 < 1,whichisT/2—
A

(T —1) in the Laplace domain as it is the same as e *("~7/2) <
1. When r = T /2 the agent is indifferent to the choices as
F,"(s) = F§ and this indifference point scales with T despite
s is sampled logarithmically (Fig. 2h).

Conclusion

Our results demonstrated that the model effectively captured
a wide range of timing behaviors with biologically realistic ar-
chitectures. It is highly unlikely that generic RNN models for
timing could achieve such structured representations. More-
over, the integration of dynamically changing past and future
timelines provides a united account for prospective and retro-
spective timing, addressing gaps in current research.
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