
Equivariant Self-Supervised Learning Improves IT Predictivity

Thomas Yerxa (tey214@nyu.edu)
Center for Neural Science, New York University

Jenelle Feather (jfeather@flatironinstitute.org)
Center for Computational Neuroscience, Flatiron Institute

Eero Simoncelli (eps2@nyu.edu)
Center for Computational Neuroscience, Flatiron Institute

and Center for Neural Science, New York University

SueYeon Chung (schung@flatironinstitute.org)
Center for Computational Neuroscience, Flatiron Institute

and Center for Neural Science, New York University



Abstract
We present a novel method for self-supervised learning of
representations that are equivariant to a set of transfor-
mations. When trained on images, we demonstrate that
the learned representations effectively factorize sources
of variability in their inputs, and provide improved pre-
diction of responses of cells in macaque visual area IT
across four different datasets.

Keywords: self-supervised learning; factorized representa-
tions; brain-model alignment

Introduction
Task-trained deep neural networks have emerged as leading
models of neural responses in the primate visual system, es-
pecially for later stages of the ventral stream such as infer-
otemporal (IT) cortex. One major criticism of this approach is
that the tasks used to train such networks (predominantly ob-
ject recognition) rely on large numbers of labeled examples,
and are thus not ecologically plausible. Recent approaches in
representation learning circumvent the need for labeled exam-
ples, and match or surpass supervised learning methods on a
variety of tasks. These approaches generally rely on supervi-
sion signals extracted from the data, rather than from human
annotations, and are thus called “self-supervised”. Many such
methods utilize an objective function that encourages invari-
ance to a particular set of image transformations, while simul-
taneously enforcing that distinct images are mapped to dis-
tinct representations (thereby preventing “collapse” to a triv-
ial solution that is invariant across all inputs). However, this
training is not well aligned with known characteristics of visual
perception: transformations for which the network is encour-
aged to be invariant are generally quite perceptible to humans
(Feather, Leclerc, Madry, & McDermott, 2023). Moreover, re-
cent work has shown that the factorization of variability due to
image transformations is more closely related to neural pre-
dictivity than the lack of variability (Lindsey & Issa, 2023).

In this work we introduce a novel self-supervsed learning
method that trades off invariance (which discards information
about the input transformation) and equivariance (which main-
tains information about the input transformation). Specifically,
a representation is said to be equivariant with respect to some
transformation of the inputs if the same transformation, ap-
plied to different inputs, results in the same change in the
representation. We demonstrate that our equivariant learning
approach produces representations that contain more ”cate-
gory orthogonal” information, better factorize the sources of
variability in the datasets, and better predict neural activity in
visual area IT.

Method
Transformation Invariant Self-Supervised Learning
(TiSSL)
Denote by X ∈RB×D a dataset of images (i.e. ImageNet), and
let τ(·;ρ) : RD → RD be a function parameterized by ρ that
maps images to images (for example τ might be the random

crop operation, in which case ρ could specify the region to be
cropped). The goal of TiSSL algorithms is to learn the param-
eters W of some function f (·;W ) : RD →Rd such that variabil-
ity over ρ is minimal. Many methods achieve this by observ-
ing pairs of randomly augmented views of a batch of images:
XA = τ(X ;ρ1), XB = τ(X ;ρ2), with ρ1,ρ2 ∼ p(ρ) where p(ρ)
is a pre-chosen probability distribution over augmentation pa-
rameters. Generally TiSSL frameworks employ an objective
function that operates on the outputs of f, ZA = f (XA;W ),
ZB = f (XB;W ). Here, we focus on the Barlow Twins ob-
jective (Zbontar, Jing, Misra, LeCun, & Deny, 2021): LBT =
Σi(1−Cii)

2 + λΣi,i ̸= j(Ci j)
2 where C is the cross-correlation

matrix between ZA and ZB. The first term encourages the
outputs in response to the same image subjected to different
augmentations to be correlated, while the second encourages
the outputs in response to distinct images to be uncorrelated.

Transformation Equivariant Self Supervised
Learning (TeSSL)

Complete invariance to augmentations is often undesirable,
and as such Transformation-invariant Self Supervised learn-
ing (TiSSL) methods commonly employ a technique known as
”guillotine regularization.” Concretely, the learned function is
decomposed into two stages a ”feature extractor” and a ”pro-
jector”: f (·) = g(h(·)). The loss function is applied to the
output of the projector during training, which is then discarded
and the feature extractor is used as the learned representation
for downstream tasks (such as object classification or predict-
ing neural activity). While this allows for h to retain some vari-
ability to ρ, it is uncontrolled, and in practice the architecture
of g must be carefully tuned in conjunction with the distribu-
tion p(ρ) for any particular TiSSL objective in order to achieve
strong performance on downstream tasks.

We propose a method to learn structured variability to
augmentations by introducing a dual loss. Given two ran-
dom non-overlapping equal-sized partitions of the dataset
X1,X2 ∈ RB/2×D, we apply the same random augmentations
to both X1 and X2, so that the first row of XA/B

1 and the

first row of XA/B
2 contain distinct images that have been sub-

jected to the same random augmentation (and so on for
subsequent rows). Additionally, we employ the use of two
projectors, ginv and gequi, that will learn to extract invari-
ant and equivariant features from the shared base repre-
sentation h. Specifically we have, ZA/B

1/2 = ginv(h(X
A/B
1/2 ) and

Z̃A/B
1/2 = gequi(h(X

A/B
1/2 ) and optimize all three functions jointly

to minimize LTeSSL = (1 − λ)LTiSSL([ZA
1 ,Z

A
2 ], [Z

B
1 ,Z

B
2 ]) +

λLTiSSL(Z̃A
1 − Z̃B

1 , Z̃
A
2 − Z̃B

2 ). The second loss term now en-
courages similar image augmentations applied to distinct im-
ages to correspond to similar transformations in the out-
put space, and distinct augmentations to be coded indepen-
dently. The hyperparameter λ allows us to adjust the rel-
ative importance of learning augmentation-orthogonal and
augmentation-related information.



Figure 1: From left to right: (1) Neural predictivity for 4 datasets collected from macaque area IT, available in the Brain-Score
database (Schrimpf et al., 2018). For all datasets, predictivity monotonically increases from λ ∈ [0, .2] and decreases from 0.2
to 0.5 for 3 of 4. (2) Relative Bures distance between between pairs of distinct images subjected to many augmentations. This
metric is closely related to the equivariance objective and so we see a monotonic increase in shared augmentation variability as λ

is increased. (3) Accuracy (correlation) of augmentation parameters decoded from the representation. The equivariant objective
increases the linearly accessible information about the input transformations (although there is a slight decrease from λ = 0.2
to λ = 0.5. (4) Negative values here indicate that there is less shared variability between image content and augmentations in
the equivariant networks relative to the vanilla networks (i.e. the two sources of variability have been factorized). Note that the
degree of factorization decreases from λ = 0.2 to λ = 0.5. (5) Shared variability arising from two types of augmentations shows
a similar pattern as in (4).

Results

As the notation above suggests, our TeSSL method can be
applied to any existing TiSSL framework. For simplicity we re-
strict ourselves to the Barlow Twins objective though we have
observed identical trends for other choices of LTiSSL (namely
MMCR (Yerxa, Kuang, Simoncelli, & Chung, 2024) and Sim-
CLR (Chen, Kornblith, Norouzi, & Hinton, 2020)). We parame-
terize h using a ResNet-50 architecture, and ginv/equi as MLPs
with architectures described in the original Barlow Twins pa-
per. We train for 100 epochs on the ImageNet-1k dataset and
sweep the hyperparameter λ over [0.0,0.001,0.1,0.2,0.5].

Representational Analyses

We conducted a series of experiments to measure the extent
to which: (1) augmentation information was linearly decod-
able from h, (2) augmentation related variability was shared
across images, (3) variability due to augmentations was fac-
torized from variability across base images, and (4) variability
due to different types of augmentations (random cropping vs.
photometric distortions) was factorized (orthogonal).

For (1) we fit linear regressions to decode augmentation pa-
rameters from the outputs of h in response to clean and aug-
mented images. For (2)-(4) we estimate the covariance of re-
sponses to various ensembles of inputs, and computed trace-
normalized Bures distances between pairs of covariance ma-
trices. For example for (2), we subjected two base images to
many different random augmentations, estimated the covari-
ance of responses to each image over augmentations, and
computed the Bures metric between the two covariance ma-
trices (a high distance indicates there is little shared variabil-
ity and vice versa for a low distance). For (3) we followed a
similar procedure but instead compared variability over aug-
mentations to a single image to the global variability over all
images in the dataset. For (4) we subjected a single image to

many different random crops, and to many different photomet-
ric distortions. The results of these analyses are summarized
in Figure 1. For (2)-(4) in all cases we computed the same
distances for a particular TeSSL network (choice of λ) and
the TiSSL network (λ = 0, and report the mean difference be-
tween the two, E[∆DB] where DB is the Bures metric. So the
leftmost point in each such plot by definition is zero (as the
iSSL network is being compared to itself). Note that (1)-(4)
correspond to panels (2)-(5) in Fig. 1 above.

Neural Predictivity
We utilized the BrainScore (Schrimpf et al., 2018) evaluation
pipeline to measure the extent to which each learned repre-
sentation can linearly predict neural responses measured in
area IT in four different experimental datasets. For reference
our highest performing model (λ = 0.2) has the 10th high-
est average predictivity of IT out of approximately 250 publicly
available models currently on the Brain-Score leaderboard.
Across a reasonably large range of values of λ, the equiv-
ariant model improves the neural predictivity relative to the in-
variant baseline for all four datasets. We note that predictivity
seems to peak together with our factorization measurements,
an observation in line with (Lindsey & Issa, 2023), but here we
demonstrate for the first time that equivariance can be used as
a learning signal to improve brain-model alignment.
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