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Abstract
AlphaZero, a deep reinforcement learning algorithm, has
achieved superhuman performance in complex games
like Chess and Go. However, its strategic planning abil-
ity beyond winning games remains unclear. We inves-
tigated this using 4-in-a-row, a game used to study hu-
man planning. We analyzed AlphaZero’s feature learn-
ing and puzzle-solving abilities. Despite strong game-
play, AlphaZero exhibited a 45% failure rate in puzzles.
Feature analysis revealed limitations in its learned knowl-
edge during self-play. We incorporated human-inspired
features into its policy and value outputs, leading to a
13% improvement in puzzle-solving accuracy. Our find-
ings highlight the potential for human insights to enhance
AI strategic planning beyond self-play.
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Introduction
While AlphaZero’s mastery of complex games like Chess and
Go is undeniable (Silver et al., 2017, 2018), a key question
remains: what exactly does it learn through self-play, and are
there limitations in its planning strategy? One crucial aspect
of human intelligence is planning: the ability to simulate
potential future states and actions. Humans excel at strategic
planning in dynamic environments – a skill many AI models
struggle with (Valmeekam, Olmo, Sreedharan, & Kambham-
pati, 2022). However, a comprehensive understanding of the
difference between human and AI planning remains elusive.

This study bridges this gap by investigating AlphaZero plan-
ning mechanisms through the lens of human planning. We
leverage the game of ’4-in-a-row,’ a task used to study human
planning (van Opheusden et al., 2023). By training AlphaZero
on ’4-in-a-row’ and comparing its performance with an estab-
lished human cognitive model, we aim to uncover AlphaZero’s
concept learning and planning processes.

Methods
Task 4-in-a-row is a two-player game where players take
turns placing pieces into a grid, aiming to connect four of their
color horizontally, vertically, or diagonally.

Figure 1: Examples board

AlphaZero Every agent consisted of a deep neural network
(DNN) with Monte Carlo Tree Search (MCTS) (Silver et al.,
2017, 2018). During training, the agents played 100 self-play
games per iteration. Training examples consisted of state,
MCTS output, and game outcome. The DNN was trained
to predict both the value and policy using mean-squared er-
ror and cross-entropy loss functions respectively. ADAM op-
timizer updated the DNN with mini-batches of past training
data. Network updates were accepted based on winning more
than 50% games against the current best network.

Results
We investigated AlphaZero’s planning ability in 4-in-a-row. We
addressed two key questions: (1) Can AlphaZero acquire con-
cepts similar to humans, and (2) Can we leverage human in-
sights to improve its performance?

Playing strength
We first established a human performance benchmark to as-
sess AlphaZero’s playing strength. Top eight agents trained
via self-play consistently surpassed the most skilled human
player’s Elo (mean Elo difference = 90.4,SD = 17.7), a mea-
sure of playing strength (Glickman & Jones, 1999), demon-
strating AlphaZero’s effectiveness in winning games.

Feature Analysis
Probing To understand how AlphaZero became good at
winning games, we employed feature probing techniques
akin to concept activation vectors (Kim et al., 2018). This
approach allowed the detection of features used by human
players including 3-in-a-row and 2-in-a-row, identified by van
Opheusden et al. (2023). We trained a classifier using the
activations at a specific layer during a given training iteration
to predict the presence of these human-used features.

This analysis revealed the network’s acquisition of the cru-
cial 3-in-a-row feature in both the value head and intermediate
layers, even without exposure to human-generated data (Fig-
ure 2). However, this analysis did not identify the represen-
tation of another human-used feature, 2-in-a-row, within the
network. This finding suggested potential limitations in Alp-
haZero’s ability to learn the full spectrum of strategic features
used by humans.

Feature representation with unsupervised methods We
further explored what AlphaZero learned through self-play
without using predefined concepts. To achieve this, we
applied Nonnegative Matrix Factorization (NMF) to extract
and visualize latent features from hidden layers (Lee, 2000;
McGrath et al., 2022). We concatenated the activations from
14907(N) random game states into a matrix Z ∈ R36N×256,
and approximated Z as the product of a weight matrix
F ∈ RK×256 and feature matrix Ω ∈ R36×K , minimizing the
reconstruction error. The resulting factors gave insights into



Figure 2: Feature Probing Analysis: ’3-in-a-row’ (left) versus
’2-in-a-row’ (right). Activations from the value head and a
shared intermediate layer demonstrate learning of the 3-in-a-
row and 2-in-a-row. Control inputs are included for reference.

the network’s understanding of the game by highlighting
important activation patterns.

NMF analysis revealed interpretable factors in the network’s
intermediate layers (Figure 3). These factors captured diago-
nal, vertical, and horizontal patterns, suggesting AlphaZero’s
ability to represent various game-relevant features.

Figure 3: Visualization of NMF for selected factors. Panels
show features captured by different residual blocks: diago-
nals, verticals, and horizontals.

Puzzle Testing
To test AlphaZero’s problem-solving ability, we designed 92
puzzles derived from 4-in-a-row. Puzzles are particular game
states that has a forced win for the current player within five
moves (Figure 5). These puzzles demanded the construction
of sequential threats to secure win.

Despite its strong playing strength, AlphaZero showed a
surprising 45% failure rate in finding the forced win in these
puzzles. In some instances, the agent showed overly de-
fensive play, neglecting opportunities to build threats (Figure
5). This observation suggested a potential gap between
AlphaZero’s learned features and the specific features and
reasoning used by humans.

Figure 4: An example of a puzzle solved in 5 moves. Numbers
indicate the order in which players placed their pieces.

We hypothesized that incorporating human-inspired features
could enhance AlphaZero’s in puzzle-solving performance.
We incorporated a cognitive value function into both the pol-
icy and value output, using features not readily observed in
the network’s self-learned repertoire, including 2-in-a-row, and
unconnected-2-in-a-row. This integration resulted in a signifi-
cant 13% improvement in puzzle-solving accuracy. This find-
ing highlighted the potential of incorporating human cognitive
insights to augment AI performance in tasks requiring specific
strategic reasoning patterns.

Figure 5: An example of AlphaZero’s failure. AlphaZero (blue
circle) chose to block opponent features instead of building
threats.

Discussion

This study investigated AlphaZero’s strategic planning in
4-in-a-row. Our findings offered insights into its potential
limitations. Our feature analysis revealed a duality: AlphaZero
learned human-interpretable features, but may not fully
represent all human-used features. Despite superhuman
playing strength, AlphaZero struggled with puzzles requiring
a “logical sequence” reasoning (Steingrimsson, 2021).
This suggested a gap between its learned strategies and
human-like planning. To bridge this gap, we introduced
human-inspired features to AlphaZero’s policy and value
estimations, which improved its puzzle-solving accuracy.

Our findings advocate for further exploration of human-
inspired features in AI. This approach highlights the power
of human insights in augmenting AI performance, and holds
promise for expediting learning and improving adaptability in
AI planning.
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