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Abstract
Recurrent neural networks (RNNs) have been widely uti-
lized for modeling biological decision-making behaviors
and uncovering underlying cognitive mechanisms. These
networks demand less manual engineering and offer a
more flexible framework compared to classical cognitive
models such as reinforcement learning. However, previ-
ous studies have predominantly focused on simple deci-
sion making tasks, such as two-armed bandits with dis-
crete rewards. Less is known about the ability of RNNs to
uncover novel computational mechanisms in more com-
plex settings, including tasks with multiple phases and
continuous rewards. Here, we trained RNNs and classi-
cal cognitive models to predict choices of human sub-
jects performing the Horizon task, which employs two
phases to examine the human explore-exploit trade-off.
Our RNNs substantially outperformed classical cognitive
models. We then reverse-engineered these RNNs by dis-
tilling them into two-dimensional versions for each in-
dividual and analyzing the geometry of their attractors
through dynamical systems analysis. We discovered that
these RNNs identified a spectrum of correlated value-
update rules and reward utilities forms. Our approach
reveals diverse strategies employed by individuals that
traditional cognitive modeling often overlooks, thereby
advancing our understanding of the complex explore-
exploit behavioral dynamics inherent in human.
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Introduction
Recurrent neural networks (RNNs) have emerged as a pow-
erful paradigm for modeling sequential data, such as neural
dynamics and behavioral sequences. Although these models
can yield excellent predictive performance, their lack of inter-
pretability often limits deeper insights. Recently, a series of
works have demonstrated that a novel RNN modeling frame-
work, which restricts the numbers of dynamical variables in
hidden states, can reveal novel cognitive mechanisms from
choice behavior of subjects performing decision-making tasks
(Ji-An, Benna, & Mattar, 2023; Miller, Eckstein, Botvinick, &
Kurth-Nelson, 2023). However, it remains unclear how it will
adapt to more complex tasks than those studied in existing
works. Here, we apply this framework to a behavioral dataset
of human subjects performing the Horizon task, designed to
examine human explore-exploit behavior across multiple task
phases (Wilson, Geana, White, Ludvig, & Cohen, 2014). By
analyzing the attractor geometry of these RNN models, we
discovered diverse strategies that are often missed by classi-
cal cognitive models.

Results
Horizon Task
In this task, 641 subjects participate in a sequence of games,
completing around 600,000 trials collectively. Each game (Fig.

1a) involves choosing between two slot machines with re-
wards from a Gaussian distribution, requiring exploration to
identify the optimal machine. Initially, the first four ”instructed
trials” allow only passive observation of rewards. Subse-
quently, subjects actively decide in either one (short-horizon)
or six (long-horizon) ”free trials,” balancing exploration and ex-
ploitation.

Fixed points of reinforcement learning models

We implemented one-dimensional (1D) and two-dimensional
(2D) model-free reinforcement learning (RL) models (Ji-An et
al., 2023), each fitted to individual subjects’ behavior (see per-
formance in Fig. 1b). In the 2D RL model (Fig. 1c), the cho-
sen action value Qt(ai) is updated by Qt(ai) = Qt−1(ai) +
α(r − Qt−1(ai)), where α is the learning rate. When the
model consistently selects the same action ai and receives
the same reward r, Q(ai) converges to r, while the uncho-
sen action value Q(āi) decays to 0, representing a fixed point
(Q∗(ai),Q∗(āi)) = (r,0). Thus, each action with varying re-
wards corresponds to a line attractor, positioned at QL = 0 or
QR = 0, with these two attractors orthogonal to each other. In
the 1D RL model (Fig. 1c), the unchosen action value (Qt(āi))
is always completely anti-correlated with the chosen action
value (Qt(āi) =−Qt(ai)). When consistently selecting action
ai and receiving reward r, the model converges to the fixed
point (Q∗(ai),Q∗(āi)) = (r,−r). Thus, the two line attractors
are anti-parallel to each other, positioned at QL =−QR.

Training two-dimensional RNNs for individuals

We first trained a large teacher RNN to predict the choices of
all subjects. Subsequently, we trained individual-specific two-
dimensional student RNNs (a version of lowrank RNN with a
gating mechanism, see (Xiong, Ji-An, Mattar, & Wilson, 2023))
to predict the logits provided by the teacher RNN. This knowl-
edge distillation reduces the number of required trials per par-
ticipant (Ji-An et al., 2023).

To facilitate interpretability of student RNNs, we used a di-
agonal matrix for the readout from the two-dimensional recur-
rent layer to the output layer (h1 and h2 corresponding to two
actions). Thus, each hi corresponds to βQi in classical cog-
nitive models, where β, the inverse temperature, indicates be-
havioral stocasticity. Our teacher RNNs and both 1D and 2D
student RNNs outperformed the best-known cognitive models
in predicting human choices (Fig. 1b; evaluated with nested
cross-validation).

Characterize attractor geometry of RNNs

In the RNNs, the hidden state ht at time t is updated using
the function ht+1 = F(ht ,xt), where xt represents the input.
Fixed points h∗(r,a) are hidden states that remain approxi-
mately stable under the update dynamics when input action a
and reward r are constant, such that h∗ ≈ F(h∗,x). We iden-
tify these fixed points numerically by minimizing the squared
speed of dynamics |h−F(h,x)|2 with respect to the hidden
states h (Sussillo & Barak, 2013). This optimization is per-



Figure 1: a. Schematic of the Horizon task, showing the short-horizon condition (only one free trial). b. The predictive performance (test
negative log-likelihood in nested cross-validation; lower is better) of RNNs and cognitive models. The logistic regression model is used in the
original study (Wilson et al., 2014). c. Line attractors of fixed points in one-dimensional and two-dimensional model-free reinforcement learning
models. d. Line attractors of fixed points in two-dimensional RNNs fitted to individual subject’s behavior, showing three example subjects. Each
gray point corresponds to a trial actually encountered by the subject. (Left) Anti-parallel updates, as in the one-dimensional model. (Middle)
Partially correlated updates. (Right) Approximately orthogonal updates, as in the two-dimensional model. e. Action angle versus maximum
value of projected logits. Each point is a subject. f. Projected logit as a function of reward, showing four example subjects.

formed using Adam optimizer multiple times, with different ini-
tializations sampled from hidden states explored by the RNN.

For each subject-specific RNN, we found two line attractors
(each corresponding to one of the two actions), consisting of
marginally stable fixed points. Each fixed point, associated
with a specific reward, is depicted in Fig. 1d.

Action angles between two line attractors reveal
correlated value updates
We parameterized fixed points along the line attractor with
their first principal direction. We then measured the action
angle between the principal directions of the two line attrac-
tors, representing the correlation between the updates for two
actions. A degree of 90◦ indicates orthogonal updates, as in
the 2D RL model; while a degree of 180◦ indicates completely
anti-correlated updates, as in the 1D RL model. Our RNNs
revealed that different subjects exhibit distinct action angles
(see three example subjects in Fig. 1d), illustrating diverse
individual strategies in this task (refer to the x-axis in Fig. 1e).

Parameterizations of fixed points uncover diverse
forms of reward utilities
To assess the impact of reward magnitude on action pref-
erence, we projected the first principal components of fixed
points (their parameterizations) on the readout vector (i.e., the
logit axis, L = hL −hR). The maximum value of the projected
logit is akin to the inverse temperature in RL models, captur-
ing the level of behavioral stochasticity (refer to y-axis in Fig.

1e). We plotted the projected logit L as a function of reward r.
In a model-free RL model using r to update action values, this
correponds to the linear function L = βu(r) = βr, where u is
the identity utility function.

Our RNNs uncovered a variety of reward utility functions
across different subjects (see four example subjects in Fig.
1f). We offer several key insights: First, the reward at L = 0
serves as a reference point (red point in Fig. 1f), above which
the received reward favors the chosen action. Second, the
slope of this function indicates reward sensitivity. Third, the
shapes of these functions are reminiscent of prospect utility
theory (Kahneman & Tversky, 1979).

Conclusion
Our study utilizes low-dimensional individual-specific RNNs to
model human decision-making in the Horizon task, revealing
novel and diverse cognitive strategies that traditional cogni-
tive models often overlook. The attractor geometry via the
fixed point analysis of these RNNs revealed a spectrum of cor-
related value updates and diverse forms of utility functions,
providing a deeper insight into the complexities of human
exploration-exploitation dynamics. This approach demon-
strates the potential of RNNs in revealing intricate cognitive
mechanisms through the lens of dynamical systems theory
and pave the way for more personalized and accurate cogni-
tive modeling, which could be instrumental for relating cogni-
tive models to psychiatry and neuroscience.
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