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Abstract 

Deep learning models are one way to address the 
reliance of cognitive neuroscience on association 
studies, by providing a sandbox for systematically 
testing causality in complex systems. However, only a 
fraction of these allow for the modelling of the entire 
human brain. Expanding upon a recent innovation of 
spatially embedded recurrent neural networks, our 
approach introduces a novel regularisation term based 
on the optimal transport problem. This enriches the 
training process with information about the distance 
between the distributions of network measures 
describing the artificial and empirical topology. 
Exemplified through communicability, our approach 
unlocks future avenues for exploring the impact of 
different topological properties of the human brain on its 
performance across varied contexts by allowing these to 
be included in training and tested on different tasks.  
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Introduction 

Most computational modelling within neuroscience 

happens at the scale of individual neurons or small 

neural assemblies. This restricts the overlap between 

phenomena of interest across cognitive and 

computational neuroscience. Although more common 

in recent years, approaches attempting to capture the 

dynamics at regional or whole-brain scales are still 

relatively rare (Pathak et al., 2022). 

A recent framework by Achterberg & Akarca et al. 

(2023) provides an approach that can be used to 

consider the spatial organisation of the brain within the 

context of recurrent neural networks. The approach of 

spatially embedded recurrent neural networks uses a 

custom regularisation function to embed the recurrent 

layer in Euclidean space by scaling the weight matrix by 

a distance matrix. Further addition of the 

communicability matrix, which denotes local random 

diffusion over the network, allows the network to 

consider not only space but also topology. Thus, using 

distance and communicability matrices to regularise 

network weights provides a vehicle for embedding the 

spatial and communicative properties of idealised 

biological systems within artificial networks. 

Here, we develop the spatially embedded recurrent 

framework by increasing the level of abstraction under 

consideration. The original instantiation does not 

capture the different ways that topology might be 

expressed under given spatial constraints. The 

approach introduced in our work drives the network to 

mirror the distribution properties of communicability, 

without restricting them to only one endpoint, thus 

potentially providing insight into the higher-order 

organisational principles giving rise to the structure 

underlying network-wide computation. 

Methods 

Task As in the original work (Achterberg & Akarca et 

al., 2023), we trained the artificial networks to perform 

a simple one-step inference task with both memory and 

decision components, shown in Figure 1. 



 

Figure 1: Using a simple 2-by-2 grid, the networks were 

first shown the target location in one of the corners of 

the grid for 20 steps, the starting location for 10 steps, 

and two possible choice locations for 20 steps, after 

which the network had to choose the location closer to 

the target.  

Empirical networks For the spatial component of our 

embedding, we used the Brainnetome parcellation, 

consisting of 246 nodes covering both cortical and 

subcortical areas. This defines the space in which the 

neural network is embedded. For the topological 

embedding, we used a weighted diffusion-tensor 

imaging-based connectome of a randomly chosen 

subject from the Cambridge Attention, Learning, and 

Memory (CALM) cohort (Holmes et al., 2019). This 

defines how weights are approximated via the learned 

objective of the neural network. 

Artificial networks We chose recurrent neural 

networks for their interconnectedness and recurrence 

without additional top-down components. The 

architecture of the network is shown in Figure 2. 

  

Figure 2: The networks were composed of three layers: 

1) input layer with 8 neurons, fully connected to 2) 

recurrent layer with 246 neurons, one per each node of 

the Brainnotome parcellation, fully connecting to 3) 

output layer with 4 neurons. 
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Spatial embedding To provide the network with spatial 

information, we used the method proposed by 

Achterberg & Akarca et al. (2023): 

𝑙𝑜𝑠𝑠𝑠𝑝𝑎𝑡𝑖𝑎𝑙  = ||𝑊 ⊙ 𝐷||   (1) 

Where W is the weight matrix of the recurrent layer and 

D is the distance matrix containing the Euclidean 

distances between Brainnetome nodes.  

Topological embedding To provide the network with 

topological information, we used a novel approach 

based on the optimal transport problem:  

𝑙𝑜𝑠𝑠𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙  =   𝐸𝑀𝐷 ( 𝐶𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙  , 𝐶𝑎𝑟𝑡𝑖𝑓𝑖𝑐𝑖𝑎𝑙  )       (2) 

Where EMD is the Earth Mover’s Distance 

(Wasserstein implementation1) between the flattened 

empirical and artificial communicability2 matrices C.  

Results 

The results presented below show networks that have 

been trained to perform the task with 100% accuracy.  

Communicability distributions As shown in Figure 3, 

the communicability distribution of the artificial networks 

approximates the empirical network over training. 

 

Figure 3: Density plot of the communicability distribution 

over epochs. The grey line is the network at 

initialization, the blue line is the target empirical 

network, and the gradient of lines between these shows 

the network across epochs.  

Weight matrices As seen in Figure 4, the weight matrix 

of the artificial networks shows organisational 

similarities to the empirical one, attained not by the 

direct introduction of an empirical weight matrix but by 

shared organisational properties arising from 

topological distribution constrained by Euclidean space.  

2 Although the standard method for calculating a communicability 

matrix is simply taking the exponent of the matrix, we made use of 

a method better suited for weighted matrices such as connectomes 

adapted from Crofts & Higham (2009) 

 



 

Figure 4: Weight matrices of a) an artificial neural 

network trained to perform the task without any spatial 

or topological information, b) an artificial neural network 

training with both spatial and topological constraints, 

and c) an empirical neural network within the 

Brainnetome parcellation. 

Discussion 

We introduce a novel approach to creating artificial 

neural networks, inspired by the topology of the human 

brain. By using Earth mover’s distance between the 

network’s own and brain-based communicability 

distributions, we were able to create networks that could 

solve a memory and decision-making task while at the 

same time shaping their connections to an end-state 

analogous to that of a connectome. 

    Our ongoing efforts are already addressing two main 

limitations: First, the examples provided here were 

based only on communicability, in the absence of other 

graph theoretical measures. As this method can use 

any graph theoretical measure that can be represented 

as a distribution, from simple weight distribution to 

different measures of centrality, many other topological 

characteristics could be considered. The second 

shortcoming is the task, where once again the lack isn’t 

in quality but rather in quantity. In the future, other tasks 

with different principles should be used, to verify the 

robustness of our approach in varied contexts. 

The promise of our approach is exciting: it could be 

used to understand the importance of different 

topological properties of the human brain on its overall 

efficiency in learning and performing a task. Moreover, 

it could be used to compare the brains of individuals or 

groups with varied neural phenotypes, which could lead 

to insights in clinical research. 
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