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Abstract
Unraveling human visual strategies during object recog-
nition remains a challenge in vision science. Existing
psychophysical methods used to investigate these strate-
gies are limited in accurately interpreting human deci-
sions. Recently, artificial neural network (ANN) mod-
els, which show remarkable similarities to human vision,
provide a window into human visual strategies. How-
ever, inconsistencies among different techniques hin-
der the use of explainable AI (XAI) methods to interpret
ANN decision-making. Here, we first develop and vali-
date a novel surrogate method, in silico, using behavioral
probes in ANNs with explanation-masked images to ad-
dress these challenges. Finally, by identifying the XAI
method and ANN with the highest human alignment, we
provide a working hypothesis and an effective approach
to explain human visual strategies during object recogni-
tion – a framework relevant to many other behaviors.
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Introduction
Humans can rapidly and accurately identify and categorize ob-
jects. Despite the apparent ease with which humans perform
this task, the underlying visual strategies employed by the
human brain remain largely unknown (Kar & DiCarlo, 2023).
Existing psychophysical methods, such as Bubbles (Gosselin
& Schyns, 2001) and Classification Images (Eckstein & Ahu-
mada, 2002), have limitations in accurately interpreting hu-
man decisions and may not fully capture the complexities
of human visual processing (Murray, 2011). ANN models

Figure 1: A. ANNs perform the same visual object recogni-
tion behavior as humans. B. Different XAI methods produce
significantly different image attribution maps (shown here as a
filtered version of the images).

have shown remarkable similarities to human vision (Khaligh-
Razavi & Kriegeskorte, 2014; Rajalingham et al., 2018) and
could provide insights into human visual strategies (Kar, Korn-
blith, & Fedorenko, 2022) (Figure 1A). However, interpreting
ANN decision-making is challenging since the XAI methods
designed to address this issue are hindered by inconsisten-
cies (Hooker, Erhan, Kindermans, & Kim, 2019) among tech-
niques (Figure 1B) and the need for full model access. To

overcome these challenges, we propose a method combining
XAI tools in ANNs and human behavioral testing to discover
human decision-making strategies.

Results
We developed a behavioral method that bypasses direct ex-
planation comparison between models.

Estimating the true differences in explanations
We define a Target model, e.g., ResNet-50 (He, Zhang, Ren,
& Sun, 2016), Figure 2, and a Reference model. While ulti-
mately, we use humans as the Reference model, we tested
multiple image-computable, fully differentiable models with
varied architecture and learning (e.g., AlexNet (Krizhevsky,
Sutskever, & Hinton, 2012), Figure 2) to develop and vali-
date our method. An explanation of a model’s output is a heat
map indicating how input image features contribute to the out-
put (Figure 2; mid-panels). We estimated the ground truth
rank order in the similarity of explanations between the Target
and Reference models by comparing feature attribution maps
produced by ten explanations using L2-distance metrics (200
natural images, spanning 10 object categories from the MS
COCO dataset (Lin et al., 2014)). We aim to recover this rank
order using a human-compatible surrogate method without full
access (“looking under the hood”) to the Reference model.

Figure 2: Estimating similarity between ResNet-50 (Tar-
get), and AlexNet (Reference) explanations using L2 distance
across XAI outputs.Feature attribution maps are generated for
each image using 10 XAI methods. The inverse of the mean
L2 distance between the maps is used as similarity scores.

Generation of EMI
We generated filtered versions of the original images (expla-
nation masked images, EMI) by retaining the top percentiles of
informative pixels based on the feature attribution map of each
explanation for the Target model((Hooker et al., 2019)). The
EMIs are created in a two-step process (Figure 3A, B): (1) ex-
planation generation using methods like Saliency (Simonyan,



Figure 3: Estimating EMI and validating it with model ac-
curacy tests. A. Generation of positive (by retaining the pixels
greater than a cut-off) and negative (by removing the pixels
greater than a cut-off) EMI. B. Reference model accuracies
(on EMI from multiple Target images) reflecting the decrease
(in red) and increase (in blue) in performance consistent with
the expected changes with EMI cut-off levels.

Vedaldi, & Zisserman, 2013) or Occlusion (Zeiler & Fergus,
2014) to rank pixels, and (2) percentile cutoff calculation and
separation to generate two types of EMIs - positive EMI (pEMI)
with top ’x’ percentile pixels and negative EMI (nEMI) with
lower ’100 - x’ percentile pixels. We experiment with vari-
ous cutoffs to evaluate the impact of significant versus non-
significant features. We hypothesized that the way EMIs drive
the behavior of two systems, computed as image-level behav-
ioral accuracies similar to (Rajalingham et al., 2018), might be
symptomatic of how similar the underlying explanations (vi-
sual strategies) used to generate the EMIs are (Figure 4).

Validation of the proposed surrogate method
We measured the behavioral accuracies (previously explained
in (Rajalingham et al., 2018; Kar, Kubilius, Schmidt, Issa, &
DiCarlo, 2019)) of all ANNs on the EMIs generated by 6 mod-
els. The Spearman correlation between the image-level ac-
curacies (Target-vs-Reference)for the EMIs across each XAI
method (Figure 4) provided the rank order of their behavior
similarity. A strong correlation between these rankings and
the ground truth (Figure 2) would validate our approach. In-
deed, we observed significant positive correlations (Spear-
man R ∼0.7, all models, Figure 5A). We observed that nEMIs
produced lower correlations compared to pEMIs. Therefore,
we only used the pEMI for the human behavioral study.

Approximating human explanations
Next, we tested human subjects (n=300; pooled) and mea-
sured their object discrimination performances (methods iden-
tical to (Kar et al., 2019)) for the EMIs generated from different
ANN models and XAI methods (Figure 5B). We observed that
VGG-16 under the saliency-method (noise tunneling smooth

Figure 4: Behavioral tests on EMI. EMIs generated from ex-
planation methods (for Target model) are presented to the Tar-
get and Reference models. The image-level accuracy pattern
is correlated between the models to get a similarity score.

gradient) (Smilkov, Thorat, Kim, Viégas, & Wattenberg, 2017)
method yields the highest alignment (Spearman R=0.45) with
human behavioral patterns. Therefore, this remains our work-
ing hypothesis for the human image attribution map during ob-
ject recognition among the tested alternatives – which can be
further probed with newer, more brain-aligned models.

Figure 5: A. The surrogate method produces explanation
rank-orders highly correlated (∼0.7) with ground truth validat-
ing the approach. pEMIs yield higher correlations than nE-
MIs B. Distribution of alignment of human behavior and model
predictions on EMIs from each XAI tool. VGG-16 with noise
tunnel smooth gradient yields the best match (∼0.45).

Conclusion
Our study introduces an accessible approach to unraveling
human visual strategies. It addresses the limitations of exist-
ing psychophysical methods and the challenges of interpret-
ing ANN decisions. This innovative method has the potential
to bridge the gap between artificial and biological vision (Fel,
Rodriguez Rodriguez, Linsley, & Serre, 2022), further advanc-
ing our understanding of human visual processing.
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