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What metrics should guide the development of more re-
alistic models of the brain? One proposal is to quan-
tify the similarity between models and brains using meth-
ods such as linear regression, Centered Kernel Alignment
(CKA), and Procrustes distance. To better understand
the limitations of these similarity measures we analyze
neural activity recorded in five experiments on nonhu-
man primates, and optimize synthetic datasets to become
more similar to these neural recordings. How similar can
these synthetic datasets be to neural activity while fail-
ing to encode task relevant variables? We find that some
measures like linear regression and CKA, differ from Pro-
crustes distance, and yield high similarity scores even
when task relevant variables cannot be linearly decoded
from the synthetic datasets. Synthetic datasets optimized
to maximize similarity scores initially learn the first prin-
cipal component of the target dataset, but Procrustes dis-
tance captures higher variance dimensions much earlier
than methods like linear regression and CKA. We show
in both theory and simulations how these scores change
when different principal components are perturbed. And
finally, we jointly optimize multiple similarity scores to
find their allowed ranges, and show that a high Pro-
crustes similarity, for example, implies a high CKA score,
but not the converse.
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Introduction
In this work we study several popular methods that have been
proposed to quantify the similarity between models and neural
data, in particular, linear regression (Yamins et al., 2014;
Schrimpf et al., 2018), Centered Kernel Alignment (CKA)
(Kornblith et al., 2019), and angular Procrustes distance
(Williams et al., 2021; Ding et al., 2021). We analyzed neural
data from five studies on nonhuman primates, but have
included only two here for space (Figure 1). In order to study
what drives high similarity scores we directly optimize the
synthetic datasets to maximize their similarity to the neural
datasets as assessed by different methods, for example,
linear regression, CKA, or angular Procrustes distance.

Comparing similarity scores across studies is challenging,
primarily due to variability in naming and implementation con-
ventions. As part of our contribution to the research commu-
nity we have created, and are continuing to develop, a Python
package that benchmarks and standardizes similarity mea-
sures1.

Results
High similarity scores do not guarantee encoding of task
relevant variables: We start by asking if synthetic datasets
with high similarity scores relative to the neural data, encode
task relevant variables, for example, the stimulus features or
the response of the monkey, in the same way as the neural
data. More specifically, is it possible for the synthetic datasets

1https://anonymous.4open.science/r/similarity-repository-03D3
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Figure 1: (a) To better understand the properties of similar-
ity measures we optimize synthetic datasets to become more
similar to a reference dataset, for example, neural recordings.
(b) We analyzed similarity scores between artificial datasets
and electrode recordings from five experiments on nonhu-
man primates. For space we present results from two neural
datasets from prefrontal cortex (PFC) (Mante et al., 2013) and
ventral stream V4 (Siegel et al., 2015) in monkeys performing
an experimental task that required the animal to attend to ei-
ther color or motion information while ignoring the non-cued
feature of the stimuli. On each trial, a field of colored mov-
ing dots is shown. Monkeys are given a cue at the beginning
of the trial to determine whether the dots in the stimulus are
moving left vs right, or are red vs green. The monkey reported
its choice with a saccade to one of two visual targets. In both
datasets, we analyzed neural activity taken when the dot stim-
ulus was presented.

to have a high similarity score while failing to encode task
relevant variables?

Surprisingly we find that for linear regression and CKA the
answer is yes, a high similarity score does not necessarily
mean the synthetic datasets encode task relevant variables
like the neural data. Figures 2a and 2b show the decode
accuracy of a linear classifier trained to decode task relevant
variables (cross-validated across different conditions) as the
similarity score increases. Before optimization, the synthetic
datasets initially consisted of Gaussian noise and the decode
accuracy was near the baseline chance level of 0.5 as
expected for the binary classifier used in this analysis.

Consider the synthetic data optimized towards the Siegel
2015 neural recordings using CKA similarity (second row and
column in Figure 2). When the synthetic dataset has a high
similarity score of 0.9 the decode accuracy for all the task vari-
ables is still less than that found in the neural activity (hori-
zontal dashed lines). This is in contrast to the case where
synthetic data is optimized to maximize angular Procrustes
similarity (first column) and a similarity score of 0.9 yields a



dataset that encodes task variables to the same degree as
the neural recordings. Note that both CKA and angular Pro-
crustes have the same similarity scale ranging between 0 and
1 (perfect similarity).
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Figure 2: (a, b) Decode accuracy for experimental variables
versus similarity scores. Decode is from synthetic data opti-
mized towards greater similarity with the neural data from (a)
Mante et al. (2013) and (b) Siegel et al. (2015). Horizontal
dashed lines indicate the decode accuracy from the neural
data.

Optimization dynamics of similarity scores: How much
of the neural data must be captured by a synthetic dataset
or model before the decode accuracy reaches the level
seen in the neural dataset itself? One perspective on this
question is to decode the task variables from neural data after
projecting onto principal components 1 through N, where
principal component 1 captures the most variance. In order
to capture all the information about the task variables, at least
several principal components must be included in the decode
(analysis not shown). This motivates the following hypothesis.
Perhaps the reason that CKA similarity scores can be so
high while the synthetic data fails to encode task variables is
because these similarity measures preferentially rely on the
top few principal components.

We explore this hypothesis in the following set of analyses
with a synthetic dataset based on the neural recordings from
Mante et al. 2013. Figure 1a shows the reference dataset.
We can think of this reference dataset as a low-dimensional
neural trajectory summarizing the population activity of many
neurons, or alternatively, as the firing rates of two neurons
over time (shown here encoding the two task variables
of choice and dot motion coherence), recorded during six
different experimental conditions, with the color in Figure 1a
denoting the condition. Figure 3b shows the transformation of
an initially random Gaussian noise dataset as it is optimized
to maximize either the angular Procrustes or CKA similarity
score with respect to the reference dataset. The score
increases from an initial value near 0 to a maximum near 1
as optimization progresses, with the insets at the top of the

figure showing the optimized noise dataset at various points
during this procedure. The yellow curve shows how well the
optimized dataset captures the first principal component of
the reference dataset, as quantified by R2, throughout opti-
mization. Notice that the second principal component, shown
in purple, is only captured at a much higher optimization
score for CKA versus angular Procrustes.

We show in both theory and simulations how these scores
change when different principal components are perturbed
(Figure 3c). And finally, we jointly optimize multiple similar-
ity scores to find their allowed ranges, and show that a high
Procrustes similarity, for example, implies a high CKA score,
but not the converse (Figure 3d).
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Figure 3: Different similarity measures differentially prioritize
learning principal components of the data. (a, b) Gaussian
random noise data is updated to maximize similarity with the
reference dataset from Figure 1a, as quantified by one of the
similarity measures. The transformation of the random noise
dataset is shown at the top of the panels. The first principal
component of the reference dataset is increasingly well cap-
tured by the optimized data as the similarity scores increase
(yellow curves). The second, lower variance, component is
also learned when maximizing the angular Procrustes similar-
ity but is only captured at high similarity scores when maximiz-
ing CKA and linear regression (not shown). (c) The similarity
score between a synthetic dataset and a modified version of
the same dataset when a single principal component is per-
turbed. For all similarity measures, when small variance com-
ponents are perturbed the similarity score is near 1. However,
when high variance components are perturbed the Angular
Procrustes score drops much more than for CKA and Normal-
ized Bures Similarity (NBS) (Tang et al., 2020). (d) We jointly
optimized the values of both angular Procrustes and CKA to
illustrate the allowed ranges of both similarity scores (region
enclosed by the solid lines). If angular Procrustes has a high
score of 0.9 (horizontal dashed line) then CKA will have a
value above this. In contrast, a high CKA score of 0.9 (vertical
dashed line) does not imply a high angular Procrustes score,
and a wide range of angular Procrustes scores are possible.



References
Ding, F., Denain, J.-S., & Steinhardt, J. (2021). Grounding

representation similarity through statistical testing. In Ad-
vances in neural information processing systems (Vol. 34).

Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019). Simi-
larity of neural network representations revisited. arXiv.

Mante, V., Sussillo, D., Shenoy, K. V., & Newsome, W. T.
(2013, Nov). Context-dependent computation by recurrent
dynamics in prefrontal cortex. Nature, 503, 78–84.

Schrimpf, M., Kubilius, J., Hong, H., Majaj, N. J., Rajalingham,
R., Issa, E. B., . . . DiCarlo, J. J. (2018). Brain-score: Which
artificial neural network for object recognition is most brain-
like? bioRxiv preprint .

Siegel, M., Buschman, T. J., & Miller, E. K. (2015). Cor-
tical information flow during flexible sensorimotor deci-
sions. Science, 348(6241), 1352-1355. doi: 10.1126/sci-
ence.aab0551

Tang, S., Maddox, W. J., Dickens, C., Diethe, T., & Damianou,
A. (2020). Similarity of neural networks with gradients.

Williams, A. H., Kunz, E., Kornblith, S., & Linderman, S. W.
(2021). Generalized shape metrics on neural representa-
tions. In Advances in neural information processing systems
(Vol. 34).

Yamins, D. L. K., Hong, H., Cadieu, C. F., Solomon, E. A.,
Seibert, D., & DiCarlo, J. J. (2014). Performance-
optimized hierarchical models predict neural responses
in higher visual cortex. Proceedings of the Na-
tional Academy of Sciences, 111(23), 8619-8624. doi:
10.1073/pnas.1403112111


