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Abstract

Humans routinely localize sounds in the world, but little is
known about localization abilities in the presence of con-
current sources. We developed a model of multi-source
localization by training a model to generate a probabil-
ity distribution over locations given binaural audio input.
We conducted an experiment to measure human multi-
source localization in scenes composed of multiple natu-
ral sounds at different locations in azimuth and elevation.
Human localization became less accurate as the number
of sources was increased, showing marked impairments
even for two sources compared to one. The model repli-
cated this dependence on the number of sources, sug-
gesting that human limitations are likely inevitable con-
sequences of sampling the spatial world with only two
sensors.
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Introduction

The location of a sound in the world is not explicit in our
sensory input, and instead must be estimated from cues, in
part those derived by comparing sound from our two ears.
The localization of individual sound sources has been stud-
ied for decades, and is known to rely on both binaural (inter-
aural time/level differences) and monoaural (spectral filtering)
cues. By comparison, much less is known about how we lo-
calize sounds in scenes containing multiple sources. The few
instances in which human localization of multiple concurrent
sources has been tested suggest that the problem is challeng-
ing for humans (Zhong & Yost, 2017).

Recent progress in computational modeling of sound lo-
calization has yielded performant deep neural network mod-
els that rival humans in their ability to localize single
sources (Francl & McDermott, 2022). Such models have
treated the continuous space of the three-dimensional world
as discretized bins, modeling single source localization as
a deterministic discriminative process. This approach is not
ideal for modeling localization in auditory scenes as it re-
quires transforming a multi-label task into multiple (indepen-
dent) single-label tasks.

We developed a new class of localization model to circum-
vent these challenges. Given an auditory scene, we estimate
a probability distribution over spatial locations, inferring mul-
tiple modes for scenes with multiple sources. We conducted
two experiments on human listeners to test the model on sin-
gle and multi-source localization.

Methods
Model and training details

Architecture and training objective Binaural audio wave-
forms were processed by a gammatone filter bank (N =
40 frequency channel bins with filters uniformly space be-
tween 40Hz and 20kHz; bandwidths approximating those of

a b c. ) d
K —s—
Left ear input L. - 5 Qj N
cochlear sample % J
model
K components elevation
Right ear input
Figure 1: Localizing sounds in auditory scenes. (a)

Input binaural waveforms are filtered by simulated human
ears (Francl & McDermott, 2022). (b-c) From the resulting
‘cochleagrams’, a neural network model extracts a low dimen-
sional embedding that we interpret as the parameters (circular
means {u;} j—1.x, concentrations {x;} j—i.x, and component
weights {o;} j—1. k) of a K-component von Mises mixture that
denotes a probability distribution over sound location. (d) The
model reports perceived source locations by sampling from
this density.

a healthy human ear). Filter bank outputs were half-wave
rectified and low-pass filtered with a 4kHz cutoff frequency to
simulate the upper cutoff of phase locking in the mammalian
ear. The model architecture was adapted from prior litera-
ture (Francl & McDermott, 2022), replacing the readout layer
to facilitate a likelihood-based training objective.

Model readouts were factorized to represent the parame-
ters of a bivariate (azimuth/elevation) von Mises mixture den-
sity (Figure 1c) specified as
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where © is the true location, {o,uj,%j}j—1.x are neural
network outputs and y(.) is the Bessel function of order 0.
We train our model to perform heteroskedastic regression by
minimizing the negative log-likelihood of the true locations of
the sources in a scene.

Dataset generation We used a room acoustic simulator
to generate spatialized scenes in different rooms (Shinn-
Cunningham, Desloge, & Kopco, 2001) with the listener at
randomly selected positions and angles within a room. 1800
rooms were used in training and a different set of 200 rooms
were used in validation. Source locations were generated
every 5° in azimuth (0° to 355°) and 10° in elevation (0° to
60°), resulting in a total of 504 locations. The source distance
was varied from 1.4 meters to the furthest distance within the
room.

Training scenes were composed of natural sounds from the
GISE-51 dataset (12,465 training sounds and 1,716 validation
sounds, grouped into 51 source categories (Yadav & Foster,
2021)). Each scene contained between 1 and 5 sources,
each of a different category. For each scene a random room
and source locations within the room where chosen. These
sources were then spatialized and combined to form a 2
second binaural audio clip. We generated a total of 1,000,000
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Figure 2: Comparing human and model performance on a location discrimination task. (a) Schematic of discrimination
experiment trial for humans. Humans were presented with a 1 second scene followed by a white-noise probe. There was a
500 ms silence between the scene and probe. Models were presented a spatialized auditory scene and the spatialized probe,
presented separately. Both were tasked with responding whether there was a source present at the probe location. (b) Location
discrimination performance (quantified as d’) as a function of scene size for humans (black, n=6) and our model (gray). Error

bars are s.e.m.

training scenes and 500,000 validation scenes.

Human localization experiments. We assessed human
multi-source localization using a discrimination task. Sounds
were presented using a speaker array of 133 speakers, ar-
ranged in a hemisphere of around the participant. The speak-
ers spanned 180° in azimuth (-90° to 90°) and 60° in elevation
(-20° to 40°) with 10° of separation between adjacent speak-
ers in both dimensions. The participant sat in the center of the
array.

Stimuli consisted of 160 natural sounds, each 1 second
long. On each trial, participants listened to a scene composed
of 1 to 6 sounds played concurrently from different speakers,
followed by 0.5 seconds of silence, followed by a 1 second
white noise "probe” from a single speaker. The probe’s loca-
tion either coincided with one of the scene’s sounds or was at
least 30° away. Participants judged whether the probe’s loca-
tion overlapped with any of the locations of the sounds in the
scene. Feedback was not provided. To test the model on the
same experiment, we rendered the same stimuli in a virtual
replica of the speaker array room with similar room acoustics.

To obtain model judgments on the multi-source discrimina-
tion task we presented the scene and probe from each trial
individually to the model. The maximum a posteriori (MAP)
estimate from the probe trial was used as the model's de-
tected probe location. We then evaluated the likelihood of the
probe location under the density predicted for the scene. We
set the model criterion to be the median likelihood value (per
scene size) across all trials. Performance was then expressed
as d’, computed from hits (trials where the probe was at the
same location as one of the scene sources, and was correctly
identified as such) and false alarms (trials judged as same but

where the probe was at a different location from the scene
sources).

Results & Discussion

Location discrimination in auditory scenes. Human dis-
crimination was good for single sources, but became less ac-
curate as the number of sources in the scene increased (Fig-
ure. 2a). This result indicates that human localization is sub-
stantially impaired when multiple sources make sounds con-
currently. The primary prior experiment on limits on human
multi-source localization was conducted with speech sources
that varied only in azimuth (Zhong & Yost, 2017). The present
results are consistent with these prior results but show that
multi-source localization is limited even when sources are di-
verse (being drawn from a large set of natural sounds) and
when they vary in elevation as well as azimuth.

The model qualitatively matched the dependence of
performance on the number of sound sources, and showed a
rough quantitative match to human performance (Figure. 2a).
This result suggests that the limits of human performance
in this domain reflect intrinsic limits on the information avail-
able in the acoustic array, in that a system optimized for the
problem of multi-source localization exhibits similar limitations.

General conclusion We introduced a model for localizing
sounds in auditory scenes. The model can express distri-
butions over location, which here we used to model multi-
source localization. It exhibited human-like behavior on a
multi-source location discrimination task. The model’s abil-
ity to represent uncertainty in location should allow it to also
represent scenes that are ambiguous, or sound sources that
are diffuse in the world.
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