
Rapid mapping of abstract domains through extraction and projection of
generalized velocity signals via a cognitive foundation model with grid cells

Abhiram Iyer (abiyer@mit.edu)
MIT

Cambridge, MA

Sarthak Chandra (sarthakc@mit.edu)
MIT

Cambridge, MA

Sugandha Sharma (susharma@mit.edu)
MIT

Cambridge, MA

Ila Fiete (fiete@mit.edu)
MIT

Cambridge, MA



Abstract
Grid cells in the medial entorhinal cortex create remark-
able spatial maps during navigation, but recent studies
show that they also extend to mapping and organizing
abstract cognitive spaces. Examples of abstract envi-
ronments include images with deformable features, like
a cartoon bird with stretching legs and neck, or audi-
tory inputs varying in frequency and amplitude. While
it is understood how grid cells map physical spaces us-
ing velocity estimates, how they map abstract cognitive
spaces remains unknown. We hypothesize that the brain
maps abstract spaces by extracting low-dimensional ve-
locity signals using the path integration capability of grid
cells, which are then error-corrected by the same circuit.
We propose the first model neural circuit that explains
how grid cells can represent any abstract space. The
model processes abstract, time-varying inputs across
modalities and identifies minimal velocity representa-
tions to capture state transition dynamics. It enforces a
self-supervised geometric consistency constraint where
movements in closed loops produce velocity estimates
summing to zero, a computation itself performed by the
grid cell circuit. Our model suggests a way for grid cells
to use velocity signals to map high-dimensional abstract
environments, explaining how animals perceive veloci-
ties in diverse non-spatial contexts and encode cognitive
spaces.
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Introduction
Grid cells in the medial entorhinal cortex are known for their
role in spatial navigation and representation. However, ex-
perimental work has shown evidence for grid cells represent-
ing abstract, non-spatial domains as well, including visual
spaces, auditory spaces, conceptual spaces and several oth-
ers (Park, Miller, Nili, Ranganath, & Boorman, 2020; Park,
Miller, & Boorman, 2021; Nau, Navarro Schröder, Bellmund,
& Doeller, 2018; Bao et al., 2019; Julian, Keinath, Frazzetta,
& Epstein, 2018; Viganò, Rubino, Di Soccio, Buiatti, & Piazza,
2021; Killian, Jutras, & Buffalo, 2012; Constantinescu et al.,
2016). How can these same cells, seemingly built for orga-
nizing physical space, also be used to organize abstract cog-
nitive environments? Theoretical models have demonstrated
that grid cells are capable of representing high-dimensional
Euclidean spaces (Klukas, Lewis, & Fiete, 2020), and can
thus be used to represent non-spatial domains. Practically
however, if grid cells are to map out these abstract domains,
they must receive a low-dimensional velocity that character-
izes changes in the input space. Here, we build a compu-
tational model that extracts such velocity signals from tem-
poral variations in abstract input spaces, thereby enabling
grid cells to build maps of these domains. Collectively, this
work explores how the brain integrates complex information
types of distinct modalities into cognitive maps and presents
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Figure 1: a. ”Stretchy bird” and sound manipulation tasks
(Constantinescu et al., 2016; Aronov et al., 2017). Experi-
mental reviews observe grid tuning while operating through
these non-spatial domains. b. An example of a similar non-
spatial domain – a “blob” placed randomly in the visual field
that can deform along the x-axis and/or y-axis. c. The differ-
ence between states in b. is a difference vectory describing
velocity in the abstract blob width-height space. d. Proce-
durally generated cognitive environments (from left to right):
Gaussian-blobs that all shift in space, 2D stretchy-bird whose
neck and legs stretch/shrink, 3D stretchy-bird whose legs also
deform independently, and 1D sound modulation task where
a sum of sine waves all change in frequency uniformly. e. A
segment of a random trajectory in 2D stretchy-bird space.

a model explaining how grid cells represent abstract cognitive
domains, extending their functions beyond spatial navigation.

Methods

Problem Setup

To answer this question, we generate analogous environ-
ments in both visual and auditory modalities as seen in Fig. 1.
The Gaussian “blobs” environment shows a group of randomly
generated 2D Gaussians that each uniformly translate in 2D
space corresponding to a given velocity. A 2D stretchy-bird
environment shows a bird whose neck and legs stretch ac-
cording to a two-dimensional velocity describing the extent of
the stretch. A 3D stretchy-bird space follows similarly except
each leg also stretches independently. The 1D sound modu-



lation task shows a sum of sine waves that uniformly change
in frequency. Random trajectories in any of these “abstract
spaces” are also procedurally generated.
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Figure 2: a. Our encoder and decoder model neural network
with two critical loss terms: next-step prediction and “loop clo-
sure”. b. Losses like shortcut estimation and isometry further
refine the predicted latent space.

Model & Learning Dynamics
Our model consists of an encoder neural network which pro-
cesses pairs of states of any generated trajectory and projects
these states onto a low-dimensional latent space (i.e., 1-3
dimensions) describing the underlying velocity between the
states. A decoder neural network uses this latent represen-
tation along with the input to predict the next state in the tra-
jectory, as seen in Fig. 2a. The model is trained end-to-end
via backpropagation with a series of self-supervised losses.
We note that the model never has access to the true velocity
distribution for any task.

The losses that we consider (visualized in Fig. 2a) consist
of two crucial loss terms (image reconstruction and “loop clo-
sure”) that enable the model to successfully learn, and addi-
tional auxiliary loss terms (visualized in Fig. 2b) that refine the
learned solution (“shortcut estimation” and isometry). The im-
age reconstruction loss minimizes the discrepancy between
the predicted and true next states along a trajectory. The loop
closure loss maintains geometric consistency by ensuring that
the sum of predicted velocities for a trajectory starting and
ending at the same point equals zero, facilitated by using grid
cells’ path integration to compute this sum, with training data
arranged into closed loops for ease. The shortcut estimation
loss ensures that the direct predicted velocity between two
inputs matches the cumulative velocities through an interme-
diate input. Finally, the isometry loss reduces the variance in
magnitudes of predicted velocities below a threshold, ensur-
ing similarly small velocities have comparable sizes.

Results & Discussion
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Figure 3: a. True velocity space of the shifting Gaussian-blobs
task colored by x and y components, followed by estimations
of this space with UMAP, Isomap, deep autoencoder, and our
model. b. Our model’s latent space converges to a minimally
low-dimensional representation when the model latent dimen-
sionality is higher than the intrinsic task dimensionality. c. Us-
ing our model’s predicted velocities in a synthetic grid cell net-
work shows gridlike firing patterns.

Our model finds a low-dimensional representation of input
data by representing velocities between successive inputs,
similar to dimensionality reduction methods. We compare our
model to UMAP, Isomap, and a deep autoencoder, using a
normalized error score to evaluate performance (see Fig. 3a).
Our model significantly outperforms baseline models in accu-
rately estimating velocities, particularly in the Gaussian-blobs
task, by using grid cells themselves for error and loss com-
putation. Additionally, our model effectively identifies a min-
imally low-dimensional representation of the velocity space
even when the model is trained with a higher dimensional la-
tent space (see Fig. 3b). Fig. 3c confirms the accuracy of our
model when its outputs serve as inputs to a grid cell network,
producing velocities that enable grid-like spatial tuning for a
cell in a module. These findings strongly support the utility of
grid cells in mapping abstract spaces given accurate velocity
representations in these domains.

Conclusion
The model provides a compelling hypothesis for how animals
extract velocities in diverse non-spatial contexts and how grid
cells encode such abstract spaces. We show that the use of
these velocities by grid cells depends on their own computa-
tional output, allowing them to map onto any space for path
integration. Our work also suggests that a fixed integrator
circuit can navigate between spaces of various modalities us-
ing common velocity representations, as long as these spaces
share a common manifold on which velocities are defined.
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