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Abstract

Recent advancements in artificial intelligence (AI) have
led to the development of vision systems that closely
resemble biological visual systems in terms of behavior
and neural recordings. However, there is increasing em-
pirical evidence that the representations learned by such
systems at scale are convergent: AI systems trained on
large datasets tend to learn similar representations de-
spite differences in architecture and training procedure.
This lack of identifiability via representation and behavior
presents a challenge to comparison pipelines commonly
used to validate AI systems as models of biological vi-
sion, as it limits the ability to reason about the unique
computational properties of an individual model. We call
for a renewed focus on the stimuli that serve as the in-
put to these pipelines and demonstrate that, for standard
naturalistic image datasets used to pre-train and validate
vision systems, there are a minority of stimuli that cause
maximal disagreement among AI systems even if these
systems achieve a high degree of agreement with the
target function. We address the identifiability challenge
by systematically exploring the narrowed space of these
contrastive stimuli in order to provide the necessary sig-
nal to adjudicate between large-scale AI systems as mod-
els of biological vision.

Keywords: deep learning; representational similarity; system
identification; neural network architecture

Introduction

The representations learned by artificial intelligence (AI) sys-
tems tend to be more similar at scale, making it difficult to
discern the unique computational properties of individual sys-
tems based solely on their behavior or representations (Han
et al., 2023). This representational convergence is a natural
consequence of the increasing level of complexity required for
machine learning algorithms to solve an ever-broadening ar-
ray of tasks that are directly analogous to tasks accomplished
by their biological counterparts (Cao & Yamins, 2021; Huang
et al., 2021; van Rossem & Saxe, 2024). This positions AI
systems as essential subjects for comparative analysis.

Standard approaches for comparing AI and biological vi-
sion, such as representational similarity analysis (RSA;
Kriegeskorte et al., 2008), centered kernel alignment (CKA;
Kornblith et al., 2019; Song et al., 2012), and linear regres-
sion (Schrimpf et al., 2020), compute a similarity between
model and neural activations aggregated over a standard-
ized set of naturalistic or semi-naturalistic stimuli. These ap-
proaches may thus be fundamentally limited in their ability to
reveal the computational differences between highly optimized
AI systems with significant representational overlap (Conwell
et al., 2022; Han et al., 2023).

To enable more informative comparisons between AI and
biological vision systems, we require techniques that can pro-
vide identifiability of individual models even in the regime of
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(b) Synthetic stimuli.

Figure 1: Model-to-model similarity matrix using CKA over (a)
ImageNet and (b) synthetically engineered stimuli (see main
text). Models at indices 0-99 and 100-199 are convolutional
and attention, respectively. Synthetic stimuli separate layer
motifs, seen here as block-diagonal structure.

convergent representations. In this work, we propose leverag-
ing disagreement between high-performing models to gener-
ate more sensitive probes for model differences. Even when
models converge in overall representation, we demonstrate
that they still exhibit subtle but informative differences in their
predictions and activations for specific stimuli and task condi-
tions. By focusing on these points of maximal divergence, we
generate a targeted set of stimuli that reveals the unique sig-
natures of individual models, allowing us to map the computa-
tional differences between AI and biological vision systems.

Furthermore, searching for contrastive stimuli—stimuli that
maximize disagreement among models—does not necessar-
ily require ground truth annotations, broadening the appli-
cability of this approach beyond standard supervised image
classification benchmarks. For many tasks, the presence of
disagreement itself can reveal common failure cases among
models or incongruencies in stimuli (e.g., hard examples).
Disagreement highlights how models see the world differently,
not just whether they see the world correctly.

Proof-of-concept
We first follow the hypothesis-driven paradigm of manually en-
gineering stimuli based on known architectural differences be-
tween model classes. Layers in a convolutional neural net-
work (Fukushima, 1988) have a local receptive field, whereas
those of attention layers in vision transformers (Vaswani et al.,
2023) are global. We design synthetic stimuli to exploit this
difference (images of squares placed apart at random dis-
tances). We evaluated the representational similarity of 200
models (100 convolutional, 100 attention) over this synthetic
data and stimuli from ImageNet (Deng et al., 2009). Our syn-
thetic stimuli (Figure 1b) separate layer motif significantly bet-
ter than the naturalistic ImageNet image set (Figure 1a).

Methods
While synthetic data, as exemplified by the proof-of-concept
above, has been successful in revealing differences be-
tween the representations of biological and artificial sys-
tems (Geirhos et al., 2019), engineering synthetic bench-
marks to test individual hypotheses is difficult to scale to the
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Figure 2: Task performances against release dates among
the inventory. The lowest and highest performers are AlexNet
and a large-scale self-supervised vision transformer, EVA-02.
Quadratic line-of-best-fit is shown for convolutional models.

ever-expanding repository of AI systems. Instead, we propose
a method for automated search for naturalistic stimuli that elicit
maximal disagreement amongst a candidate set of models.
Unlike past work in stimulus optimization (Golan et al., 2020),
we target real-world stimuli rather than synthetic or artificially-
perturbed stimuli. Naturalistic stimuli elicit naturalistic repre-
sentations and behaviors, which are of primary interest when
validating AI systems against biological vision.

We collect the largest inventory of vision models eval-
uated for behavioral and neural predictivity to date: 1355
models with distinct parameters across a variety of archi-
tectures, training objectives, and pre-training and fine-tuning
datasets (from small- to large-scale); see Figure 2 and refer
to Krizhevsky et al. (2012) and Fang et al. (2023) for details
of the AlexNet and EVA-02 architectures. We emphasize the
variation in performance and architecture class as it allows us
to test prior assertions about task performance, architecture,
and neural predictivity at scale (cf. Conwell et al., 2022) and
to relate these conclusions to model identifiability.

Measuring agreement
We derive overall and per-stimulus agreement measures from
Fleiss’ κ (Fleiss, 1971). Let T be a matrix of size nstimulus ×
ncat, where Ti j, represents the number of models that predict
the categorical response j for stimulus i. Then

ntotal =
nstimulus

∑
i=1

ncat

∑
j=1

Ti j and nrater,i =
ncat

∑
j=1

Ti j

are the total number of category j ratings for stimulus i and the
total number of raters (models with a response) for stimulus i,
respectively. For each stimulus i, we then compute the per-
stimulus agreement as:

pagree,i =
∑

ncat
j=1 T 2

i j −nrater,i

nrater,i · (nrater,i −1)
, (1)

which ranges from 0 (low) to 1 (high) agreement.

Results
Figs. 3a and 3b compare agreement with the full dataset of
stimuli versus a set of contrastive stimuli (here, the 1000 im-

ImageNet-1K validation set accuracy bin

Fl
ei

ss
’ κ

all stimuli
contrastive stimuli

(a) ImageNet-1K validation.

ObjectNet testing set accuracy bin

Fl
ei

ss
’ κ

all stimuli
contrastive stimuli

(b) ObjectNet testing set.

Figure 3: Overall agreement (Fleiss’ κ) for models binned by
ImageNet-1K validation set accuracy over all (blue) and con-
trastive (1000 lowest-agreement) stimuli (orange); see Fig-
ure 4 for disaggregation by stimulus. The contrastive stimuli
exhibit lower agreement across model performance levels.
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(b) ObjectNet testing set.

Figure 4: Per-stimulus agreement (Eq. 1) sorting stimuli (im-
ages) from low (yellow) to high (blue); see Figure 3 for aggre-
gation. The most contrastive stimuli are contained subsets of
the full dataset, seen here as continuity of the yellow region.

ages with the lowest agreement across all models) for the Im-
ageNet validation set and the ObjectNet testing set (Barbu
et al., 2019). Contrastive stimuli persist for a wide range of
system performance levels, even while higher accuracy im-
poses a floor on agreement (since correct predictions must be
in agreement; see Geirhos et al., 2020, for related discussion).

Figs. 4a and 4b display the more fine-grained measure of
per-stimulus agreement (Eq. 1), evidencing a wide range of
agreeability for different stimuli (images) and datasets (Ima-
geNet vs. ObjectNet). Figure 4b demonstrate that some stim-
uli in ObjectNet remain significantly disagreeable for all model
sets regardless of performance level constraint.

Conclusion
In this work, we have proposed a novel approach for enhanc-
ing the identifiability of AI systems as models of biological vi-
sion by leveraging stimulus disagreement. This method holds
potential not only for distinguishing between different com-
putational models in artificial intelligence, but also as a pro-
cess to generate stimulus candidates for subsequent neural
response collection in biological studies.
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