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Abstract
The ability to estimate temporal relationships is critical
for both animals and artificial agents. Cognitive science
and neuroscience studies provide remarkable insights
into behavioral and neural aspects of interval timing. In
particular, scale-invariance observed in behavior and sup-
ported by neural data is one of the key principles that
goes beyond interval timing and governs animal percep-
tion. Furthermore, once they learn a task, humans and
other animals can rapidly adapt to temporally rescaled
versions at a wide range of scales. We show that using a
scale-invariant cognitive model of working memory com-
bined with convolutional and max-pool layers gives rise
to reinforcement learning (RL) agents that are invariant
to temporal rescaling in the environment. We illustrate
this using a simple interval bisection task and show that
this property is specific to scale-invariant memory and not
observed in commonly used recurrent networks.
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Introduction
Learning temporal relationships between cause and effect is
critical for successfully obtaining rewards and avoiding pun-
ishments in a natural environment. Humans and many other
animals can estimate the temporal duration of events and use
that estimate as an integral component of decision-making.
Furthermore, the ability to do this rapidly and flexibly across
a wide range of temporal scales has been critical for survival.
While machine learning systems also possess the capacity to
represent the elapsed time, typically via recurrent connections,
they often struggle with learning temporal relationships and
generalizing across multiple scales.

Critically, the mammalian ability to estimate time is known
to be scale-invariant across a wide range of temporal scales
from seconds to minutes and hours (Buhusi & Meck, 2005;
Gibbon, 1977; Buhusi et al., 2009; Balci & Freestone, 2020). A
scale-invariant system has a linear relationship between the
mean estimated time and the actual time, with a constant coef-
ficient of variation, known as Weber’s law (Portugal & Svaiter,
2011). This law is foundational for understanding mammalian
perceptions and spans virtually all perceptual domains except
for angles (Gibbon, 1977; Wilkes, 2015). Machine learning sys-
tems are typically not scale-invariant and they tend to perform
well only at a limited set of scales and require adjustments of
hyperparameters to learn problems at different scales. Such
hyperparameters include learning rate, temporal resolution
and temporal discounting (Tiganj, Gershman, Sederberg, &
Howard, 2019).

Following previous work on scale-invariant memory
(Shankar & Howard, 2012) and its applications in building artifi-

cial systems invariant to temporal rescaling (Jacques, Tiganj,
Sarkar, Howard, & Sederberg, 2022), we show that knowledge
learned at a single temporal scale can be generalized to a wide
range of temporal scales in an RL setting. We demonstrate
this on a temporal bisection task where agents learned to dif-
ferentiate three short intervals from three long intervals. Once
they learned the task using REINFORCE (Sutton, McAllester,
Singh, & Mansour, 1999), the intervals were rescaled by a
factor of 2 and a factor of 4. Without additional training, the
agents were able to generalize and maintain perfect perfor-
mance. This is because scale-invariant memory constructs
a log-compressed internal timeline. Applying the logarithm
to the temporally rescaled environment turns rescaling into
translation (log(ax) = log(a)+ log(x)). We then used CNN
combined with max-pool to achieve invariance to rescaling.

Methods
Building on models from computational and cognitive neuro-
science (Shankar & Howard, 2012; Howard et al., 2014), we
designed a neural network architecture in which the impulse
response gives rise to scale-invariant sequentially activated set
of neurons (analogous to time cells, reported in mammalian
brains (Pastalkova, Itskov, Amarasingham, & Buzsaki, 2008;
MacDonald, Lepage, Eden, & Eichenbaum, 2011; Salz et al.,
2016; Tiganj, Jung, Kim, & Howard, 2017)). Specifically, this
network first constructs an approximation of a real-domain
Laplace transform of the temporal history of the input signal
f (t):

F(s; t) =
∫ t

0
e−s(t−t ′) f (t ′)dt ′. (1)

The impulse response (response to input f (t)= δ(0)) of F(s; t)
decays exponentially as a function of time t with decay rate
s: e−st (Fig. 1). The above equation can be discretized and
implemented as a recurrent neural network with a fixed (not
trainable) diagonal connectivity matrix with e−s∆t values along
the diagonal. The output of the recurrent layer is mapped
through a linear layer with analytically computed weights (Post,
1930) implementing a discrete approximation of the inverse
Laplace transform f̃ giving rise to sequentially activated cells
(Fig. 1) that together constitute a scale-invariant internal time-
line of the past (Fig. 2):
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where
∗
τ := k/s and k is a parameter that affects the width

of the sequentially activated cells (larger k results in smaller
width). The above equation is scale-invariant in a sense

that rescaling f̃ (
∗
τ; t) −→ f̃ (

∗
τ;αt) can be undone by setting

∗
τi −→

∗
τi/α. Choosing

∗
τ to be log-spaced (

∗
τi = (1+c)i−1∗τmin,



with c > 0) makes the rescaling of taustar equivalent to transla-

tion:
∗
τi =

∗
τi+∆ where ∆ = log1+ca. This implies that temporal

rescaling will cause a translation of the sequentially activated
units (Fig. 3A,B). Our network architecture had 50 log-spaced

units with
∗
τmin = 1,

∗
τmax = 700, and k = 8. Once temporal

rescaling is converted into translation, we apply convolution
and maxpool, which are translation invariant. Therefore, the
network becomes invariant to temporal rescaling (Fig. 3C). The
output of the max pool is fed into two dense layers followed by
a layer with two neurons and softmax activation.

Figure 1: Response of the CogRNN to δ pulses. Neurons
in Fs;t decay exponentially at a spectrum of time constants s.
Neurons in f̃∗

τ;s
activate sequentially resembling time cells.

Figure 2: A. Observations in the largest interval (48 time steps)
at different scales: the two pulses represent the start and
stop of the interval. B. f̃ activity after the second pulse was

presented. Internal time values are equal to values of
∗
τ: activity

of each neuron in f̃ is shown at corresponding
∗
τ.

Results and Discussion
We evaluated RL agents on a temporal bisection task where
they were trained to differentiate three short intervals (30, 33,
and 36 time steps) from three long intervals (40, 44 and 48),

Figure 3: A. f̃ activity after the second pulse as a function

of
∗
τ index (rather than

∗
τ value shown in Fig. 2B). Due to the

log-compression temporal rescaling results in translation. B.
Overlapping f̃ activity after log1+c(α) translation. C. Applying
convolution and max-pool to f̃ from panel A results in the
output invariant to temporal rescaling.

Figure 4: Performance as a function of trial numbers for training
at scale=1 and evaluating at scale=2 and 4.

see Fig. 2A for an illustration of the observation space (the
durations were based on a neuroscience study by Kim, Ghim,
Lee, and Jung (2013)). The proposed agents were able to learn
the task after about 200k trials (Fig. 4, dashed blue line). Then,
we rescaled the time in the observation space by a factor of 2
and factor 4. Without additional training, the agents reached
perfect performance (Fig. 4, dashed red and green lines). This
was not the case for agents trained with RNNs, which struggled
to learn the task and failed to generalize to different temporal
scales. This result illustrates that log-compressed memory can
enable generalization to temporal rescaling in the RL setting.
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