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Abstract: 

Natural scenes comprise both visual and auditory infor-
mation, which are integrated to form a coherent percep-
tion. The multi-modal encoding of the auditory and visual 
information has been extensively investigated in biolog-
ical brains and various advanced deep neural networks 
(DNNs) respectively. However, little is known about the 
underlying relationship between information representa-
tions in biological brains and DNN models. In the current 
study, we investigate whether humans and DNNs repre-
sent the auditory and visual information in a comparable 
way during audio-visual speech recognition (AVSR). For 
humans, we used electroencephalography (EEG) record-
ings to analyze neural activity of auditory and visual fea-
tures when participants engaged in a speech recognition 
task within audio-visual scenes. For DNNs, we analyzed 
hidden layers’ embeddings from a transformer-based 
model, i.e., AV-HuBERT, which achieves state-of-the-art 
performance in AVSR tasks. We observed significant 
representational similarity between the EEG responses 
and model embeddings. Further analysis revealed that 
the model embeddings from lower hidden layers exhib-
ited the greater similarity with the neural encoding of vis-
ual and auditory features. These results suggest that 
DNNs can naturally evolve human-like information repre-
sentations, and their hidden layers’ embeddings effec-
tively capture auditory and visual patterns in neural rep-
resentations of humans. 
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Introduction 

The brain continuously receives and integrates these 
sensory inputs, forming a coherent perception of the ex-
ternal world (Senkowski et al., 2008). Nevertheless, the 
linear model seems insufficient to capture the neural en-
coding of multi-modal information in complex brain net-
works. Recently, transformer-based deep neural net-
work (DDN) models have shown promising results in 
multi-modality tasks (Vaswani et al., 2017; Devlin et al., 
2018; Lan et al., 2019). These models encode infor-
mation input as contextual vector representations 
known as model embeddings. These embeddings ef-
fectively capture the structure and semantics of data, 
enabling these models to achieve human-level perfor-
mance in tasks such as natural language processing 
(NLP), computer vision (CV), and automatic speech 
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recognition (ASR). Given that the artificial neural net-
works are inspired by the biophysical properties and 
cognitive functions of the brain, it is a key area of re-
search to explore the underlying relationship of infor-
mation representations between biological brains and 
DNN models (Cox et al., 2014; Li et al., 2023). In the 
current study, we focus on transformer-based DNN 
models for audio-visual speech recognition (AVSR) 
tasks, and investigate whether the model embeddings 
reflect the neural representations of visual and auditory 
features as observed in human brains. 

The present study aims to reveal the shared infor-
mation representations between human brains and 
transformer-based DNN models. Such comparison is 
challenging due to the fundamentally divergent encod-
ing methods used by biological and artificial neural net-
works. To address this, we employed representation 
similarity analysis (RSA), a multivariate technique that 
compares the similarities between data types based on 
the shared structure of their distance matrices 
(Kriegeskorte et al., 2008). The study makes two pri-
mary contributions. First, it introduces an effective 
method for comparing information representations be-
tween human brains and DNN models. Second, it pro-
vides direct evidence of a correlation between neural 
responses and model embeddings during audio-visual 
speech recognition tasks. 

Results 

Ten English native speakers were recruited for the 
experiment. They were asked to listen to sixteen 
speech segments, each approximately one minute long, 
with background noise in natural scenes (i.e., gym and 
road). While listening, participants simultaneously 
viewed corresponding videos of the natural scenes. 
Their EEG signals were recorded by 64-channel Bio-
semi ActiveTwo system. The audio and video stimuli 
employed in the EEG experiment were processed 
through a Transformer-based model, AV-HuBERT, with 
state-of-the-art performance in AVSR tasks (Shi et al., 
2022). We extracted model embeddings from the 
eleven hidden layers of the AV-HUBERT model.  



Spreading Representational similarity across 
channels and layers 

We conducted a representational similarity analysis 
(RSA) on the multivariate neural activity at the channel-
level. Specifically, we calculated the channel-level neu-
ral representation dissimilarity matrix (RDM) averaged 
across participants, and the model RDM for each layer. 
We then computed the representational similarity be-
tween the neural and model RDM for each channel. The 
results revealed consistent topographic patterns of rep-
resentational similarity across layers. Moreover, this 
similarity was notably more pronounced in the central 
and occipital electrodes (Fig. 1). 

 

Fig 1. Representational similarity between EEG re-
sponses and model embeddings in each hidden layer. 
Black dots denote the channels where the representa-
tional similarity is significant (p< 0.05, FDR-corrected). 

Model embeddings in the lower layers reflect 
the neural encoding of sensory features  

The pronounced representational similarity observed 
in the central and occipital electrodes suggests that the 
model embeddings capture neural representations of 
auditory and visual features. To identify which layers’ 
model embeddings represent low-level auditory and 
visual features, we used the temporal response function 
(TRF) method (Ding & Simon, 2012) to remove the neu-
ral responses to these features. We then examined how 
such manipulation altered the representational similar-
ity between neural activity and the model embeddings 
across different layers. 

We extracted the sound envelope of speech and the 
optical flow of the video as low-level auditory and visual 
features, respectively. TRFs were derived from these 
features based on time-aligned EEG signals. We simu-
lated the neural responses to these features by convolv-
ing the sound envelope and optical flow with their cor-
responding TRFs. Then, we subtracted the simulated 
neural responses from the original EEG responses. Fi-
nally, we conducted RSA on the EEG responses after 
excluding the neural response to the sound envelope 
and optical flow.  

We found that the exclusion of neural responses to 
sensory features resulted in decreased representa-
tional similarity between the EEG responses and model 
embeddings across all model layers (Fig. 2). Notably, 
such exclusion induced more substantial changes in 
representational similarity patterns within the first three 
layers (Fig. 3).  

Taken together, our findings revealed the representa-
tional similarity between EEG responses and model 
embeddings during speech processing in audio-visual 
natural scenes. In addition, model lower layers of the 
model primarily encode sensory features, thereby ex-
hibiting greater similarity with the neural encoding of 
sensory features in the brain. 

 

Fig 2. Representational similarity between EEG activity 
excluding the neural responses to sound envelope and 
optical flow, and model embedding in each hidden layer. 
Black dots denote the channel where the representa-
tional similarity is significant (p< 0.05, FDR-corrected). 

 

Fig 3. Top: Representational similarity averaged across 
channel before (gray bars) and after (white bars) ex-
cluding the neural responses to sound envelope and 
optical flow. The differences between each pair of bars 
are significant (p< 0.05, FDR-corrected). Error-bars de-

notes SE. Bottom: The difference between represen-
tational similarity before and after the exclusion of neu-
ral responses to sound envelope and optical flow.  
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