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Abstract
Objects can be described by various dimensions
that, when combined, form a distinct entity. This
study explores the multi-dimensional structure of
mental representations of objects and the associ-
ated property of complexity. We investigated how dif-
ferent characteristics influence perceived complex-
ity and evaluated the predictive power of entropy
scores as indicators of this complexity. Our re-
sults show that entropy scores, calculated from men-
tal embeddings and adjusted by perceptual weights,
can predict perceptual complexity effectively. No-
tably, once these weights are tuned to the rela-
tive complexity of each dimension, entropy scores
based on human complexity ratings significantly en-
hance the correlation between entropy and partici-
pant choices in distinguishing between ambiguous
and control images. Importantly, we established a
complexity score using a perceptually tuned CLIP
model, CLIP-HBA, that makes this metric generaliz-
able to novel stimuli due to its ability to detect per-
ceptually relevant dimensions in objects.
Keywords: mental embeddings, object recognition,
complexity, entropy, ambiguity

Introduction
The brain must synthesize many different aspects of an
object in order to discern its identity or meaning. The
mental construction process involves determining which
categories an object might fall into based on the as-
pects we perceive. Then, our final identification of the
object relies on the intersection of and interaction be-
tween those categories (Zheng et al., 2019; Kriegesko-
rte and Diedrichsen, 2019). In a previous study, Hebart
et al. (2020) identified up to 49 distinct ”dimensions”
(e.g. animal-related, metal-related, thin/flat, etc.) that
can be used to predict human similarity judgements.
They hypothesized that these dimensions encompass
the overall structure of our mental representations of
objects. Given that not all objects can be character-
ized by the same number of dimensions, and the inter-
play between dimensions will differ based on what they
are, we raise a question regarding an emergent prop-
erty of these intricacies: what makes an object com-
plex? Emergent properties are characteristics of a sys-
tem that arise from the interaction and interrelation of its
parts, rather than from the individual components them-
selves. One thought of complexity is that it arises from
the constituent parts that must be integrated together
within a system, in theories such as Information Inte-
gration Theory (IIT) (Oizumi et al., 2014). Building on
this foundation, we explored the application of entropy
scores derived from the THINGS dataset embeddings
(Hebart et al., 2020) as predictors of complexity. En-
tropy is related to the uncertainty or unpredictability of
a system’s state (Jia and Wang, 2024). For this study,
we calculated entropy using the THINGS image embed-
dings from the work of Hebart et al. (2020) and a ver-
sion of CLIP trained on the THINGS dervied mental em-
beddings, called CLIP-HBA (Zhao, under review). Im-
ages that exhibited a wider dispersal of values across

the 49 dimensions were calculated to have higher en-
tropy scores. We hypothesize that there exists a positive
relationship between the number of dimensions which
characterize an object and complexity, since more di-
mensions leads to more potential interactions and rela-
tionships within the conceptual understanding of an ob-
ject. Given the possibility that some dimensions may be
more complex than others, we asked subjects to rank
images and calculated dimensional weights based on
the results. Then, we used these weights to calculate
and recalibrate the entropy of ambiguous images and
style-control images passed through CLIP-HBA.

Complexity Ranking of THINGS Images
We first used the 1854 original THINGS embeddings
(Hebart et al., 2020) to calculate entropy scores for each
image. Each embedding was normalized and turned
into a probability distribution. Then, we measured the
entropy of each distribution to obtain a numerical en-
tropy score which described the ”spread” of dimensions
contained within each image. Figure 1B demonstrates
the contrast between a high-entropy and a low-entropy
image. The rose plot of the image of squid displays
fewer dimensions than the rose plot of the image of a
watch. Subsequently, we categorized the images into
five groups from low to high entropy (Figure 1C), and
randomly selected 10 images from each group, total-
ing 50 images. We then presented these images to 14
participants who ranked them from most to least com-
plex (Figure 1D). These responses then allowed us to
calibrate entropy based on participant perceptions of di-
mension complexity, identifying which dimensions con-
tributed more significantly to the overall complexity. We
then tested these calibrated dimension scores on an
ambiguous object task

Complexity Comparisons of Ambiguous
Images

We first obtained 36 ambiguous images and created
36 style-transferred control images through stable dif-
fusion models (Kalra, 2024) and Adobe Firefly. Figure
1E displays an example of an ambiguous image vs. its
style-transferred control. To determine whether the am-
biguous images exhibited a higher level of complexity
than the control images, we displayed each ambiguous
image along with its control and asked participants to
choose which one was more complex. From their re-
sponses, we calculated the difference between their re-
sponses as scores— positive scores indicating a higher
preference for ambiguous images, and negative scores
indicating a higher preference for control images. Then,
the 36 ambiguous images and their controls were run
through CLIP-HBA (Zhao, under review). The resul-
tant embeddings were turned into entropy scores and
re-weighted for dimensional complexity using the com-



Figure 1: Experiment Schematic

plexity score from the THINGS image ranking experi-
ment described above. We performed 3 different Spear-
man correlations with the participant scores: one with
the CLIP-HBA entropy scores before weighting, one
with CLIP-HBA entropy scores after weighting, and one
with the output from another image quality assessment
model, CLIP-IQA (Wang et al., 2022). For all of our
correlations, we first calculated the pairwise differences
between the average proportions of participant ambigu-
ous choice and participant control choice. Then, we
calculated the corresponding pairwise proportional dif-
ferences of unweighted CLIP-HBA entropy, weighted
CLIP-HBA entropy, and CLIP-IQA complexity to corre-
late the participant data with. We found the Spear-
man correlation coefficient between original participant
scores before reweighting, and the complexity scores
from CLIP-IQA yielded a coefficient of 0.524 (p = 0.001).
The Spearman correlation coefficient between original
participant scores and the entropy scores from CLIP-
HBA was −0.488 (p = 0.003) due to a greater shift to-
wards the ambiguous choice over the control choice. Fi-
nally, the correlation between the participant results and
the differences between proportions of weighted CLIP-
HBA entropy scores showed a significant improvement
over both the comparison with unweighted CLIP-HBA
entropy scores and the comparison with CLIP-IQA com-
plexity values (ρ = 0.8350,p = 4.4708−10) (see Figure
2). This suggests that the weights obtained from the
analysis of the Hebart embeddings in the context of
our ranking experiment might be generalizable to ex-
ternal image datasets, since they came from partici-
pant data in the context of a completely different set
of images. Additionally, the significant improvement in
correlation between the unweighted CLIP-HBA entropy
scores and the weighted CLIP-HBA entropy scores sug-
gests a combination of entropy scores from CLIP-HBA
and individual dimensional complexity is an indicator of
human perceptions of complexity. In future studies, neu-

Figure 2: Participant Responses vs. Weighted Entropy

ral component could be incorporated when viewing the
images. Additionally, the control images used by the
participants were generated in a style that did not con-
sistently eliminate the dual-meaning quality. Instead,
the diffusion model added finer details to the images,
such as skin textures, flowers, and trees in the back-
ground. The 36 ambiguous images were also selected
arbitrarily; further studies should explore more images
in a wider range of categories.

Conclusion
The results of our study and subsequent analysis pro-
vide new insights regarding the emergent properties
of complexity in mental representations. We demon-
strate that a combination of metrics, including entropy
along with assessing the complexity that may be con-
tained within dimensions, provide a better understand-
ing of nuanced human perceptions of complexity than
any standalone metric. In future work, we aim to ex-
pand this methodology to a broader range of images
and refine our analyses based on additional human cog-
nitive data, enhancing the generalizability and accuracy
of complexity predictions.



Acknowledgements
This work was supported by Vanderbilt’s IDD Reads
Grant.

References
Hebart, M. N., Zheng, C. Y., Pereira, F., and Baker,

C. I. (2020). Revealing the multidimensional men-
tal representations of natural objects underlying hu-
man similarity judgements. Nature Human Behaviour,
4(11):1173–1185.

Jia, H. and Wang, L. (2024). Introducing entropy into or-
ganizational psychology: An entropy-based proactive
control model. Behavioral Sciences, 14(1):54.

Kriegeskorte, N. and Diedrichsen, J. (2019). Peeling
the onion of brain representations. Annual Review of
Neuroscience, 42:407–432.

Oizumi, M., Albantakis, L., and Tononi, G. (2014). From
the phenomenology to the mechanisms of conscious-
ness: Integrated information theory 3.0. PLoS Com-
putational Biology, 10(5):e1003588.

Wang, J., Chan, K. C. K., and Loy, C. C. (2022). Explor-
ing clip for assessing the look and feel of images.

Zheng, C. Y., Pereira, F., Baker, C. I., and Hebart, M. N.
(2019). Revealing interpretable object representa-
tions from human behavior.


