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Abstract
As animals interact with their environments, they must
infer properties of their surroundings. Some animals, in-
cluding humans, can represent uncertainty about those
properties. But when, if ever, do they use probability
distributions to represent their uncertainty? It depends
on which definition we choose. In this paper, we ar-
gue that existing definitions are inadequate because they
are untestable. We then propose our own definition,
which defines probabilistic representations in terms of
two properties: (1) invariance to the source of uncer-
tainty and (2) consistency in how this uncertainty is taken
into account by downstream computations across multi-
ple tasks.
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Introduction
Uncertainty poses a fundamental challenge for perceptual
systems. There is strong evidence that humans and some
animals address this challenge by representing their uncer-
tainty in order to adjust their behavior and make better deci-
sions (Bach & Dolan, 2012). However, it has remained unclear
how exactly they represent their uncertainty. Probability the-
ory is a normative language for representing uncertainty and
it is therefore tempting to think that humans and animals “use
probability distributions” (Ma & Jazayeri, 2014). Indeed prob-
abilistic accounts of perception are widespread in psychology,
neuroscience, and philosophy and have been successful at
predicting brain activity and behavior (Griffiths, Chater, Kemp,
Perfors, & Tenenbaum, 2010; Vilares & Kording, 2011).

However, theories of probabilistic representation have long
been controversial. In particular, a precise definition of proba-
bilistic representation remains lacking and many researchers
have argued that probabilistic representations do not consti-
tute a falsifiable theory (Jones & Love, 2011; Bowers & Davis,
2012). Below we describe common definitions of probabilistic
representations arguing that they fail to make falsifiable pre-
dictions. We then propose our own theory that grounds prob-
abilistic representations in two criteria: source invariance and
probabilistic transfer.

Defining probabilistic representation
All definitions of probabilistic representation must answer
three questions. Below we describe these three question and
survey common answers.

(1) What does it mean to specify a probability distribu-
tion? At one extreme, we may call any representation that
allows the experimenter to infer a probability distribution prob-
abilistic. However, any neural representation could be used as
“evidence” to determine a posterior distribution over its repre-
sented variable. Under this view, every representation would
therefore be probabilistic. While this can be a useful perspec-
tive for describing representations, an empirically testable no-
tion of probabilistic representation has to be more constrained.

Perhaps this constraint can come from the nature of a prob-
ability distribution. Thus, at the opposite extreme, we may
require that the brain represent the set of mathematical con-
cepts that are used to define probability distributions. This
would capture humans explicitly thinking about probability the-
ory, but would exclude humans and animals taking uncer-
tainty into account without representing these mathematical
concepts.

The apparent dichotomy between these views is one
source of skepticism about probabilistic representation. We
suggest an alternative: probability theory defines not just
probability distributions but also a set of rules to construct and
use these distributions. Perhaps, being a probabilistic repre-
sentation is a matter of approximating these rules (Harman,
1982). Though rarely stated explicitly, this is the view most
experimental investigations seem to take.

This approach also creates a fundamental issue, however.
If the generative model guiding probabilistic inference is not
explicitly represented, we need to infer it. We call this issue
model indeterminacy and show below that it renders many
commonly used definitions unfalsifiable. This is not to say that
such definitions are not useful in describing neural represen-
tations. However, they are best understood as a “language”
that enables any neural representation to be described from a
probabilistic perspective rather than as a testable theory.

(2) What aspects of a distribution must be represented?

MAP estimation and priors cannot be distinguished from op-
timizing an objective function. The simplest version of rep-
resenting an aspect of a probability distribution is to repre-
sent its most likely value, i.e. to maximize the conditional
probability p(z|x) about the variable z given the input x. In-
deed probabilistic models in neuroscience often take this form
(Ernst & Banks, 2002). However, we can frame the same sys-
tems as maximizing an objective function and indeed almost
any system that maximizes an objective function could alter-
nately be taken to implement MAP estimation. To see why,
suppose you compute maxz L(x,z) for some objective func-
tion L. As long as C(x) :=

∫
z L(x,z) < ∞, we can define

a probability distribution proportional to this objective func-
tion, p(x|z) = L(x,z)/C(x), which could equivalently be max-
imized. Note that this argument extends to taking into ac-
count priors as well. Thus, MAP estimation and priors are
not testable features of probabilistic representations.

Representations of uncertainty are not necessarily probabilis-
tic. In response, we may require that probabilistic represen-
tations encode not just a point estimate but a range of uncer-
tainty. However, the same issue arises: virtually any heuristic
uncertainty representation amounts to optimal probabilistic in-
ference under some prior. This means that either any uncer-
tainty representation is probabilistic or we need to further con-
strain our definition. In addition, this perspective introduces a
new problem: when a single nuisance variable is used as a
source of uncertainty, it becomes ambiguous whether a rep-
resentation encodes uncertainty or that source of uncertainty.



Indeed, this is a common set-up in studies investigating prob-
abilistic representations and we call this problem representa-
tional indeterminacy.

(3) What constraints are there on the generative models?
One prominent response to the issue of model indeterminacy
has been to posit that probabilistic representations are the
probability distributions arising from the optimal generative
model. This is often justified by the fact that probabilistic com-
putations can be necessary for optimal behavior (Ramsey,
1926). However, this does not imply that optimal behavior is
necessary for probabilistic computations. Indeed probability is
a language in which we can state our prior assumptions and
make consistent inferences whether or not those assumptions
are correct. An optimal-observer constraint excludes proba-
bilistic inferences based on imperfect knowledge – arguably
the prototypical and most frequent scenario.

A Testable Theory: Source Invariance and
Probabilistic Transfer

We now propose our own theory, using two criteria: source in-
variance (which resolves representational indeterminacy) and
probabilistic transfer (which resolves model indeterminacy).

A test for source-invariant uncertainty encoding
To address the issue of representational indeterminacy, un-
certainty representations should encode uncertainty invariant
to its source (Sahani & Dayan, 2003; Walker et al., 2022).
Source invariance not only renders uncertainty representa-
tions testable, but also benefits the animal by enabling reuse
of the same uncertainty representation across multiple uncer-
tainty sources. Source invariance comes in degrees: a rep-
resentation may only be invariant to certain sources of un-
certainty, or may only be approximately invariant. The more
strongly uncertainty is encoded as opposed to other informa-
tion, the more it becomes a representation of uncertainty.

A test for task-transferable uncertainty decoding
To address the issue of model indeterminacy, we propose to
analyze how subjects generalize across tasks. If a subject
is using a probabilistic computation, we can use their perfor-
mance on the first task to characterize their generative model.
We can then use those constraints on the generative model to
predict their behavior on a second task. If an organism is us-
ing a probabilistic representation, probability theory provides
a clear justification for these predictions. But if the subject
is using a non-probabilistic representation, there is no rea-
son to expect probability theory to make accurate predictions.
We call this generalization “probabilistic transfer.” Importantly,
probabilistic transfer tests whether subjects (self-)consistently
operate over uncertainty representations. This is the defining
feature of probability theory.

Notably, only some probabilistic computations allow for
such a test. In particular, MAP estimation can never be used
to test for a probabilistic computation, as we could always al-
ternately understand the computation as maximizing an objec-

tive function (even across tasks). On the other hand, marginal-
ization (e.g. computing an expected value or a marginal prob-
ability) as well as change of variables (i.e. transforming a prob-
ability distribution of z into a probability distribution of f (z)) can
serve as discernible probabilistic computations.

Like source invariance, probabilistic transfer benefits the
animal. Probabilistic transfer enables the animal to general-
ize to new levels of uncertainty that it has never experienced
on a particular task (Maloney & Mamassian, 2009; Koblinger,
Fiser, & Lengyel, 2021). Like source invariance, probabilistic
transfer comes in degrees. To be considered probabilistic, a
representation of uncertainty does not need to be capable of
marginalization and change of variables for all possible down-
stream computations and it does not need to approximate the
laws of probability theory perfectly. Rather, the more functions
it can generalize to and the closer its approximation, the more
probabilistic a representation.

Evidence

Some studies indicate that probabilistic representations are
used for marginalization in perceptual decision making, in
particular within the related framework of Bayesian trans-
fer (Trommershäuser, Gepshtein, Maloney, Landy, & Banks,
2005; Whiteley & Sahani, 2008). Bayesian transfer uses an
analogous task-transfer criterion to test for evidence that a
neural computation relies on Bayesian decision theory. As a
result, there is substantial overlap with our own criterion, but
there are instances of Bayesian transfer that are not instances
of probabilistic transfer (e.g. computations that can be ex-
plained as MAP estimation (Sato & Kording, 2014)) and there
are instances of probabilistic transfer that are not Bayesian
transfer (e.g. change of variables that need not fall under the
paradigm of Bayesian decision theory).

Finally, our theory can inform different theories of neural
probabilistic codes. In particular, marginalization and change
of variables are linear operations for two prominent theo-
ries, distributed distributional codes (Zemel, Dayan, & Pouget,
1998) and sampling-based inference (Moreno-Bote, Knill, &
Pouget, 2011). This provides a straightforward basis for prob-
abilistic transfer in these formats. In contrast, while probabilis-
tic population codes (Ma, Beck, Latham, & Pouget, 2006) can
learn to marginalize (Beck, Latham, & Pouget, 2011), it is not
clear how they would generalize such a marginalization oper-
ation to new levels of uncertainty.

Conclusion

Researchers have long debated whether humans and animals
have probabilistic representations. A central issue in this de-
bate has been a lack of agreement on what it means to have
a probabilistic representation. Here we have argued that this
question should be given careful consideration and have high-
lighted issues with prevalent frameworks. We have then pro-
posed our own theory which we argue overcomes these is-
sues.
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