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Abstract
Humans find structure in visual data; we perceive three-
dimensional objects and scenes, even when viewing a
static image. Here we evaluate the possibility that a sim-
ple learning objective gives rise to this ability: predicting
the upcoming visual stimulus, given the current visual in-
put and self-motion. We instantiate this hypothesis in sil-
ico by optimizing a transformer to predict the future im-
ages, conditioned on camera movement and the current
image. This requires learning in a continuous setting (i.e.,
visual sequences, not standalone images), unlike stan-
dard computer vision datasets (e.g., ImageNet). To this
end, we train a computational model on video datasets
collected in a naturalistic 3D environment. As a proof of
principle, we demonstrate how this biologically plausible
optimization approach generates a visual model that can
be used to infer depth, construct 3D shapes, and sup-
port cognitive process like mental rotation—all without
direct supervision on these tasks. Together, our find-
ings demonstrate how spatial perception might emerge
through a biologically plausible learning objective.
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Introduction
Humans and other animals use two-dimensional visual inputs
to navigate a three-dimensional world. Our ability to infer spa-
tial relationships (e.g., depth, shape) is foundational to more
‘complex’ cognitive functions, such as planning and problem
solving. For example, inferring the shape-level properties of
objects, including unseen surfaces, enables us to understand
grasp/interact with objects, even when they have arbitrary, un-
familiar shapes (Gibson, 2014). Remarkably, humans can in-
fer 3D shape from a single image (Hassanin, Khan, & Tahtali,
2021), even though estimating these underlying properties
from a 2D input is an ill-posed problem (Pizlo, 2001). There
are many theories for how our visual system learns to rep-
resent these object-level properties. It is possible that our vi-
sual representations emerge from simple learning rules which,
given the richness of our sensory environment, lead to robust
object-level representations (Saffran, Aslin, & Newport, 1996).
Conversely, animals might be born with ‘innate’ representa-
tions of objects which provide the scaffolding for our visual
representations (Carey, 1991; Spelke, 1990). Deep learn-
ing frameworks offer a test bed to instantiate these hypothe-
ses, and have become increasingly prevalent in the study of
human vision (Yamins & DiCarlo, 2016). Within this frame-
work, scientific hypotheses can be used to design and opti-
mize computational models, such that the resulting model be-
haviors/representations can be used to empirically evaluate
these hypotheses (Richards et al., 2019). Here we adopt this
deep learning framework to evaluate the possibility that simple
learning rules lead to 3D understanding of objects. We formu-
late this theory by considering the relationship between visual
(i.e., 2D images) and proprioceptive (i.e., self-motion) signals
in a continuous setting. More concretely, we use a transformer

architecture to predict future visual signals (i.e., images), con-
ditioned on self-motion (i.e., camera displacement, between
two images) and prior experience (i.e., previous image). As
such, our optimization framework reflects a biologically plausi-
ble learning mechanism, using an ethologically plausible data
distribution. Critically, we suggest that it is possible to learn
about the 3D structure of the environment without any explicit
geometric prior.
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Figure 1: Using the CWM3D model to learn 3D shape under-
standing from natural video. (a) Ethologically plausible video
datasets are used to train the model. (b) Two frames are sam-
pled from the video. (c) The CWM3D model takes two images
as input to encode image embeddings and a global vector.
The global vector contains information about the global trans-
formation between the two images. Then, the model predicts
the self-motion from the global vector. Finally, either the self-
motion or the global vector is used to predict the future sen-
sory input given the current sensory input. During training, we
optimize the Mean-Squared Error (MSE) loss between predic-
tions and ground truth for both self-motion and visual input.

Method
Model The CWM3D model is designed to predict the future
visual sensory input and the self-motion without any explicit
geometric prior. The overall framework is illustrated in Fig-
ure 1. The model starts from Counterfactual World Modeling
(CWM) (Bear et al., 2023), which predicts the future sensory
input based on the current sensory input and partial informa-
tion (e.g., revealed patches) of the future image. In CWM3D,
we introduce two modifications to address the head-motion.
First, the model encodes the global transformations between
two images into an implicit vector (a global vector). This vec-
tor, combined with the current frame, is used to predict the
future frame in the video and, in practice, includes the infor-
mation about camera pose changes. Second, we read out
a 6-DoF camera motion from the global vector using a linear
projection layer. This predicted camera motion is used if the
ground truth motion is not provided on a physical scale (e.g.,
COLMAP (Schönberger & Frahm, 2016) estimation provides
arbitrary scale translation). The model has another linear layer



that converts the (predicted) camera motion into the input for
the decoder, which predicts the future image using the current
image and the camera motion. It is worth noting that camera
pose prediction from the global vector opens the possibility of
training the model on large datasets without labeled camera
motion.

Dataset We used three video datasets to train our
model: ScanNet++ (Yeshwanth, Liu, Nießner, & Dai, 2023),
RealEstate10K (Zhou, Tucker, Flynn, Fyffe, & Snavely, 2018),
and CO3D (Reizenstein et al., 2021). Both the RealEstate10K
and CO3D datasets are composed of videos with COLMAP-
estimated camera poses. For ScanNet++, we trained metric-
scale Neural Radiance Field (Tancik et al., 2023) models to
create 3D scenes using images captured from the scenes.
Then, we rendered videos with random translations and rota-
tions, simulating the exploration of an agent in static scenes.

Loss Function For both RGB prediction and camera mo-
tion prediction, we used Mean Squared Error (MSE) as the
loss function to optimize the model.

Result

We illustrate how the CWM3D model can produce novel views
with counterfactual self-motion, and use the prediction to infer
the depth map and geometry of the object in Figure 2. In Fig-
ure 3, we describe how the model can solve the mental rota-
tion task, demonstrating a natural extension of its capabilities.

Input Image Novel View Synthesis

Depth Readout From Counterfactual Motion

b.

c.

a.

Geometryd.

Figure 2: Predicting novel view images, depth maps, and ge-
ometry from a single image using the CWM3D model. (a) A
single image is provided to the model as input. (b) The model
synthesizes the novel view images corresponding to the coun-
terfactual self-motions. (c) We extract the depth map using the
predicted image from counterfactual in-plane motions and op-
tical flow algorithm. (d) The predicted geometry of the object
is presented as a point cloud. For improved visual clarity, the
disparity (inverse of depth) map is visualized in (c) and points
of low density are removed from the point cloud in (d).

Novel View Synthesis Given a single image, the model
can generate the images from novel views with any desired
motion. Rotating around the object provides useful informa-
tion about the 3D shape, revealing parts that are not visible in
the given image.

Depth Readout To obtain depth information from an image,
we induce a counterfactual in-plane camera motion that is per-
pendicular to the camera’s view direction. We obtain the dis-
parity map by computing the optical flow between the original
image and the predicted image using RAFT (Teed & Deng,
2020). We then invert this disparity map and scale it by the
known counterfactual translation distance to obtain depth. We
refer to the original CWM paper (Bear et al., 2023) for details
of a method to obtain optical flow in a principled way.

Geometry Using the depth map, we construct the point
cloud of the scene. It is important to note that CWM3D can
obtain depth not only from the input image but also from syn-
thesized novel view images, demonstrating the model’s capa-
bility to understand the 3D shape of an object.

Mental Rotation In the mental rotation task (Shepard &
Metzler, 1971), the participants are presented with two im-
ages and need to infer whether the two objects in the images
share the same 3D structure. CWM3D has a natural ability
to solve the mental rotation task by predicting the camera mo-
tion between two images and generating the novel view image
based on the predicted motion. The difference between the
prediction and the provided image can be used to determine
whether the two objects have the identical 3D structure.
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Figure 3: Mental Rotation. (a) Two images are provided with
an unknown pose change. The task requires the agent to in-
fer how to rotate the objects in three dimensions to match with
each other. The difference between two images is displayed.
(b) The model can predict the self-motion between two im-
ages, and use it to reconstruct image 2 from image 1. The
difference between the ground-truth and the predicted image
2 is plotted.

Conclusion
In this work we introduce CWM3D, a model that learns 3D per-
ception by optimizing a biologically plausible objective without
any geometric prior. We demonstrate its capability to perform
novel view synthesis, depth estimation, and geometry extrac-
tion. Furthermore, we show the model has a natural ability to
solve the mental rotation task without direct supervision.
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