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Abstract
The appropriate methods for aligning neural network
models to the brain remain controversial. Ideally, a good
alignment method should be powerful enough to enable
accurate predictions of neural responses under a map-
ping from model units to neurons, while also being spe-
cific enough to distinguish the target system (e.g. a
particular brain area) from other systems. It has gen-
erally been assumed that the goals of predictivity and
specificity are in tension with each other, with methods
that severely restrict the possible relationships between
model and target being better for specificity, and more
flexible methods yielding higher predictivity. We show
that this apparent tension does not in fact exist. Fun-
damentally, this is because specificity requires not only
distinguishing response patterns from different brain ar-
eas (i.e. separation), but also recognizing response pat-
terns from the same brain area as being similar across
subjects (i.e. identification). Taking this into account,
we find that relatively flexible methods, like linear regres-
sion, can exhibit greater specificity compared to stricter
methods, while also enabling better predictions. Moti-
vated by the idea that the correct balance between strict
and loose is manifested by the empirical relationships be-
tween subjects in a population, we introduce an align-
ment method that incorporates known aspects of the bi-
ological circuit, further improving predictivity without re-
ducing specificity.

Keywords: alignment; mappings; neural predictivity; neural
networks; mechanisms

Introduction
Aligning neural networks to the brain has been challenging be-
cause it has been unclear what the criteria for good alignment
methods are. Ideally, a good alignment method should suc-
ceed on two fronts. First, it should enable accurate predictions
of neural activity, implemented via a mapping from model com-
ponents to neural components that aligns simulated and real
activity. Second, an alignment method should exhibit speci-
ficity, identifying response patterns from the same part (e.g.
brain area or model layer) as being similar across different in-
stances of the population, while distinguishing response pat-
terns from different parts as being dissimilar.

It has been widely presumed that the goals of predictivity
and specificity are in tension with each other (Ivanova et al.,
2021). Intuitively, more flexible transform classes appear bet-
ter for prediction, while stricter transform classes appear bet-
ter for separation. To the extent that this trade-off exists, there
is an inherent divergence between the goals of accurate pre-
diction (e.g. building brain-machine interfaces) and scientific
understanding (e.g. systems identification). Indeed, this as-
sumption has had substantial influence on metric design, with
researchers pursuing scientific understanding favoring stricter
methods (Williams, Kunz, Kornblith, & Linderman, 2021) and
those pursuing engineering applications favoring more flexible
methods (Schrimpf et al., 2018).

However, the literature overlooks a crucial aspect of speci-
ficity: recognizing instances of the same type (e.g. of the
same brain area or model layer) as similar. Indeed, an align-
ment method that indiscriminately separated all response pat-
terns would be incapable of recognizing target systems of the
same type (e.g. the same brain area and species) as similar to
each other, and therefore would lack specificity. Considering
both aspects of specificity suggests that rather than a trade-
off, there is an optimal balance between strictness and flexibil-
ity, where we want the narrowest class of transforms that ac-
curately maps responses between subjects for the same brain
area. To better approximate this ideal, we propose a transform
class that accounts for known aspects of the biological circuit,
increasing predictivity without reducing specificity.

Aligning subjects in a model population
We evaluate several alignment methods, including soft match-
ing (Khosla & Williams, 2023), ridge regression, and Rep-
resentational Similarity Analysis (RSA) (Kriegeskorte, Mur,
& Bandettini, 2008). Soft matching is a strict method that
matches individual units with “soft” permutations. Because we
formulate soft matching as a predictive model, we can evalu-
ate it for predictivity. On the other hand, RSA does not pro-
vide a mapping, so cannot be evaluated for predictivity, only
for specificity. We also introduce and evaluate methods that
incorporate aspects of a biological activation function.

We first evaluate these methods on a simulated mouse pop-
ulation because, unlike neural data, we can sample responses
for all units over arbitrarily many stimuli, allowing for clearer
results. We use a modified AlexNet that predicts mouse brain
responses under a linear mapping better than other models
(Nayebi et al., 2021). The models have a smooth activation
function (softplus) and Poisson-like noise to better match cor-
tical response properties (Stevens & Zador, 1995; Dapello et
al., 2020). To simulate different subjects, we vary the ran-
dom seed controlling the weight initialization and training data
order. Although our model population likely does not fully cap-
ture true inter-animal variability, we also evaluate methods on
actual mouse data and obtain similar results.

We assess same-layer predictivity with the R2 score on
held-out responses, after fitting parameters to map one model
instance to another. To evaluate both aspects of specificity,
we compute the silhouette score (Rousseeuw, 1987), which
is close to 1 just in case responses for different layers are
separated much more than responses for the same layer. The
silhouette score for response profile i is:

s(i) =
b(i)−a(i)

max(b(i),a(i))

where a(i) is the mean dissimilarity between i and other re-
sponse profiles for the same model layer, and b(i) is the mean
dissimilarity between i and responses from the next most sim-
ilar model layer. We compute the mean silhouette score over
all model subjects and layers.

Ridge regression (green bars) achieves higher predictiv-
ity than soft matching (orange bars) (Fig. 1A). However, a
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Figure 1: Model population. (A) Same-layer predictivity be-
tween model subjects. (B) Overall predictivity. (C) Silhouette
scores. RSA scores are on a different scale from R2, so we
also consider squared RSA scores. (D) Multidimensional scal-
ing of dissimilarity (1-similarity) between response profiles.

further substantial increase in predictivity occurs for ridge re-
gression on pre-softplus activations (light green bars) at every
layer. Thus, model responses converge after applying the fil-
ter weights, diverge after the activation function, and converge
again in the next layer.

Rather than finding a trade-off, we find that increased pre-
dictivity can improve specificity (Fig. 1B, C) as long as inter-
layer separation is maintained. For example, ridge (post-
softplus) exhibits more specificity than soft matching (Fig. 1B).
This is because ridge clusters same-layer responses more
tightly than soft matching while maintaining inter-layer sepa-
ration (Fig. 1D). Ridge (pre-softplus) achieves an even higher
silhouette score, in line with its increased predictivity. In fact,
a maximally specific transform class should achieve maximum
predictivity for same-layer responses, while being as narrowly
defined as possible.

To develop alignment methods that perform better on post-
non-linearity responses (e.g. firing rates), we introduce trans-
form classes that account for the activation function. Linear
Nonlinear approximately inverts the non-linearity using Yeo-
Johnson scaling and then uses a generalized linear model
to apply a fitted linear mapping followed by a smooth non-
linearity (the exponential). Linear Softplus precisely matches
the softplus activation function, and Pre Linear Softplus maps
pre-non-linearity responses of the source model to post-non-
linearity responses of the target model (i.e. exactly rather
than approximately inverting the softplus non-linearity). These
methods improve both predictivity and specificity, with Pre Lin-
ear Softplus performing best (Fig. 1B, C).

Aligning mouse subjects and models to mouse
We investigate how well our results generalize to a mouse
dataset containing Neuropixels recordings for 31 subjects in
response to 118 naturalistic stimuli, averaged over 50 trials
(de Vries et al., 2020). With only about 50 neurons measured

per subject and brain area, we pool N-1 subjects’ neurons to
evaluate same-area predictivity for a target subject. Overall,
the rank ordering of alignment methods in terms of same-area
predictivity is similar for the real population as for the simu-
lated population (Fig. 2A). This helps validate our simulated
population as a model of inter-animal variability, at least to
some degree.
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Figure 2: Mouse population. (A) Same-area predictivity be-
tween subjects. (B) Model separability with respect to brain
similarity. (C) Overall predictivity. (D) Overall model separabil-
ity (both directions).

When pooling across subjects, we cannot compute silhou-
ette scores. We therefore assess specificity indirectly by con-
sidering the average difference between 4 candidate models
in terms of assessed similarity to each brain area. A method
with low specificity would not be able to differentiate models
that are more similar to the brain from those that are less sim-
ilar, and therefore would have low model separability.

We map model-to-brain as well as brain-to-model. For
model-to-brain, soft matching separates models better, con-
sistent with (Khosla & Williams, 2023), but for brain-to-model,
Ridge and Linear Nonlinear separate models better (Fig. 2B).
A possible reason is that model responses can have patterns
not present in the brain data, and flexible mappings like Ridge
or Linear Nonlinear may only detect such a discrepancy when
mapping from brain to model. When mapping in both direc-
tions, model separability is as good for Ridge and ILNP as it
is for soft matching. Overall, there is not a trade-off between
predictivity and model separability (Fig. 2C, D).

Conclusion

There is not a systematic trade-off between predictivity and
specificity. In fact, both goals should be achieved by the nar-
rowest class of transforms under which subjects’ responses
predict each other with high accuracy for that area. To better
approximate that class, we introduce a method that accounts
for the activation function, improving predictivity while main-
taining specificity. Future research should investigate whether
we can further constrain ILNP in a way that improves speci-
ficity without reducing predictivity.
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