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Abstract

The expressivity of a neural network where all weights are
initialized randomly and only constant inputs (biases) are
learned is not well-studied and of interest in two domains.
In neuroscience, the contribution of inputs from upstream
regions, versus local plasticity, to learning in neural cir-
cuits (e.g. motor cortex) is poorly understood. In arti-
ficial intelligence (Al), recent empirical work has shown
that fine-tuning biases alone can yield efficient multi-task
learning. However, both fields lack a thorough under-
standing of the limits of input-only learning. Here, we pro-
vide theoretical and empirical evidence that a wide class
of functions and finite trajectories from many dynamical
systems can be well approximated by randomly initialized
networks where only biases are optimized. These results
extend our understanding of neural network models, pro-
viding guidance for future Al development and models of
inter-region learning in the brain.
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Introduction

The diversity of behaviour that can be generated by learn-
ing only the inputs to a neural network is a relevant question
for both neuroscience and machine learning. In the brain, it
is unknown to what extent the output dynamics of a neural
sub-network are determined by local synaptic changes in that
network or adaptation in the sub-network’s inputs (Feulner et
al., 2022). If only highly sophisticated inputs will result in
useful changes in dynamics then this might suggest that lo-
cal plasticity is critical for learning; conversely, if very simple,
e.g. constant, inputs can radically reshape output dynamics
then input-driven learning might be an important element of
biological learning. Recent work (Ogawa, Fumarola, & Maz-
zucato, 2023) has shown that diverse dynamics can occur
from changes in constant input to a Recurrent Neural Network
(RNN), but characterization of the total set of output dynamics
that one can span simply by input-only learning is lacking.

In Machine Learning (ML), empirical research has begun
to explore multi-task methods where a single set of synap-
tic weights are pre-trained and then biases are adapted on a
per-task basis (Zaken, Ravfogel, & Goldberg, 2021). An un-
derstanding of the expressivity of networks where only the in-
puts, or biases, are learned would provide a theoretical back-
bone for this work. Related to bias-only learning, a rich liter-
ature in ML has explored the set of functions on Jid data, and
dynamical systems on temporal data, that can be learned by
randomly initializing a network and then learning other sub-
sets of the parameters. This research has focused on learn-
ing output weights only—referred to as random neural net-
works in the iid case (Rahimi & Recht, 2008; Scardapane
& Wang, 2017) and reservoir networks in the temporal case
(Gonon, Grigoryeva, & Ortega, 2023; Hart, Hook, & Dawes,
2021). It has been found that very general classes of func-
tions/dynamical system trajectories can be learned by adapt-
ing only the outputs. Recent work in Al and neuroscience

has also explored other sets of parameters, for example those
involved in batch normalization (Giannou, Rajput, & Papail-
iopoulos, 2023; Burkholz, 2023) and neuron gain parame-
ters (Stroud, Porter, Hennequin, & Vogels, 2018). An answer
to whether similar results hold when you randomly initialize
weight matrices and learn only biases would not only comple-
ment this work but help us understand the limits of what can
and cannot be learned with random systems.

The current study characterizes the expressivity of neural
networks where only the inputs are learned. We first provide
theoretical results showing that random networks with learned
inputs can approximate a wide variety of functions and dynam-
ical system trajectories in the iid and temporal cases respec-
tively, and then show experimental validation. By demonstrat-
ing the extent to which one can solve problems through tuning
inputs alone, our work provides an important perspective on
learning in biological and artificial neural networks.

Theory

Our theory builds off classic results on universal function ap-
proximation (Hornik, Stinchcombe, & White, 1989). For con-
creteness we state results for ReLU activations only. Note,
however, that several key results apply more generally. In the
interest of space we state theorems without proof. Let v be the
number of non-bias parameters associated with a single hid-
den unit in the given neural network. E.g. in the feed-forward
case Vv will be the dimension of the input plus that of the out-
put. Let pg be a uniform distribution on the zero-centered ball
of radius a in a v dimensional real space.

Lemma 0.1 Consider a single hidden layer, feed-forward,
RelLU activation neural network whose weight parameters for
each hidden unit are sampled from po. We can find a hidden
layer width and bias vector such that, with a probability that
is arbitrarily close to 1, the random-weight neural network ap-
proximates any continuous function on compact support with
any strictly positive degree of accuracy.

We study the (partially observable) dynamical system
in+l = F(Znyxn)v Yn = g(zn)a 20 € U where Zny Xn, and Yn
are real vectors of finite dimension, g is an arbitrary contin-
uous function, and U is compact. Assume further that F is
continuous and arbitrary except for the constraint that for any
input x (in a set of interest), and any z € U, F(z,x) € U.

Theorem 0.1 Consider a single hidden layer RNN with ReLU
activations whose input, output, and recurrent weight param-
eters for each hidden unit are sampled from py. We can find
a hidden layer width, a bias vector, and a hidden-state initial
condition for the RNN such that, with a probability that is arbi-
trarily close to 1, the RNN approximates finite trajectories from
the above dynamical system with any strictly positive degree
of accuracy.

Remark: a key element of our proofs is that the random
network hidden layers are much larger than neural networks
which have fully-tuned weights.



Experiments
Feedforward networks

We first show that the same randomly initialized weight matri-
ces can be frozen and used to solve multiple tasks by chang-
ing only input biases. We train a feedforward network with
1 hidden layer of 32 000 neurons and no output layer bi-
ases. Individual weights are sampled uniformly on [—0.1,0.1]
and reused with only input biases trained via backpropagation
for 20 epochs separately on 7 different tasks: MNIST (Deng,
2012), KMNIST (Clanuwat et al., 2018), Fashion MNIST (Xiao,
Rasul, & Voligraf, 2017), Ethiopic-MNIST, Vai-MNIST, and
Osmanya-MNIST from Afro-MNIST (Wu, Yang, & Prabhu,
2020), and Kannada-MNIST (Prabhu, 2019). All tasks in-
volve classifying 28x28 grayscale images into 10 classes. For
MNIST, Ethiopic-MNIST, Vai-MNIST, Osmanya-MNIST, and
Kannada-MNIST, the classes are digits used by different cul-
tures; for Fashion MNIST, classes are clothing types; for KM-
NIST, they are Japanese Hiragana characters.

We run 5 random seeds for each dataset and compare with
a fully-trained network of the same architecture. The results
are shown in Figure 1. We see that a network with frozen
weights and only trained biases achieves comparable perfor-
mance to the fully-trained network on all tasks, indicating the
potential for multi-task learning on the same set of weights.

Finally, we have also observed that one requires larger hid-
den layers to achieve similar results to fully trained networks
(figures not shown). Whether one requires more or less total
trained parameters is currently being investigated.

Accuracy of bias-only and fully-trained networks
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Figure 1: Accuracy of feedforward networks with hidden layer
width of 32000 after training on different datasets for bias-
only (same randomly initialized weights) and fully trained ap-
proaches with the same architecture. We use 5 runs of 20
epochs with different random seeds for the bias-only net-
works. Error bars have been omitted as the standard errors
are of order 1073, We see that bias-only networks achieve
comparable performance to the fully trained networks, demon-
strating their effectiveness and flexibility.

Recurrent networks

We extend this framework to a single layer vanilla RNN where
the input, recurrent, and readout weights are kept frozen and

W Fully-trained

only the input biases are learned. As in the feedforward
case, each weight is sampled from a uniform distribution on
[—0.1,0.1] and 5 random seeds are used.

For the first experiment, networks with increasing numbers
of hidden units—256, 512, and 1024—are trained to predict the
value of the next time-step in a sum of sine waves given a
sequence of the five previous values in time. We find that
learning the biases is enough to reconstruct the signal in an
equally-sized time window that does not overlap with the one
on which it was trained, and importantly, the R? coefficient of
the model increases as a function of width.

We also experiment with predicting future timesteps of the
chaotic Lorenz attractor. Once again, each value is predicted
given a history of the previous five time-steps, and the network
is evaluated on a non-overlapping window. To increase the
difficulty of the reconstruction task, the testing window is cor-
rupted with Gaussian noise. We find that, despite the added
noise, a network of width 1024 is sufficient to predict the gen-
eral trajectory of the system in all three dimensions.
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Figure 2: Reconstructing a Lorenz attractor using next-step
prediction. The signal was corrupted with Gaussian noise
sampled from A((0, 1) and then normalized The parameters
of the signal (6 = 10,p = 28, = £) were chosen such that
the system exhibits chaotic behawour

Conclusion

In this work, we demonstrate, analytically and empirically,
that bias-only learning in feedforward and recurrent networks
is more expressive than one might have anticipated. How-
ever, theory and experiments suggest the requirement, in net-
works with only biases trained, of a hidden layer that is larger—
sometimes by a massive margin—than one would need if train-
ing weights. In this way we view our work as a proof of the
existence of solutions in bias-only networks. Going forward
we aim to explore how the computational efficiency of bias-
only learning may be improved.
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