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Abstract
A central question in neuroscience is how neuronal activ-
ity leads to higher level phenomena such as the forma-
tion of memories. The Neuroidal model was proposed
as a general computational model for brain cognition.
This model was later used to suggest how new memories
might be created in the mammalian cortex (Valiant, 2005).
This was one of many early quantitative theories of mem-
ory that used biologically plausible values for parameters
such as number of neurons n, number of synapses per
neuron d, and inverse synapse strength k. Yet, many fun-
damental questions remain about the properties of this
model. For example, how many memories can be stored
given a particular set of parameters? To better under-
stand this question, we offer simple methods for theoret-
ically and empirically evaluating the capacity of the Neu-
roidal model within specific contexts.
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Introduction
We choose to closely investigate a basic model of the neu-
ral system, known as the Neuroidal model, by Leslie Valiant
(1994). In this context, neuroids represent biological neurons.
These units, their underlying structure, and the model’s func-
tional mechanisms are defined in a simple, algorithmic form.
We study the capacity of this model to better understand the
bounds of computational thought. Also, drawing inspiration
from the brain has led to a wealth of innovation in areas such
as machine learning (Yang & Wang, 2020), and we intend for
our results to inspire such progress.

Background
The Neuroidal model remains a unique perspective on mod-
eling cognition within a machine. It stands separate from the
Perceptron-based learning model (McCulloch & Pitts, 1943),
which has been widely used today in applications such as
deep learning. The model also rejects the notion of cell as-
semblies, which are a component of the well-established Heb-
bian learning framework (Hebb, 1949). It is also separate from
the Hopfield network (Hopfield, 1982), which has a history of
neuroscientific study. We hold interest in the Neuroidal model
as a means to better explain the most basic phenomena of the
brain, such as unsupervised memorization.

This model has been iterated upon by its author since 1994
and as recently as 2017. Other researchers have also built
upon it as a foundation for new neural models with positive re-
sults (Papadimitriou, Vempala, Mitropolsky, Collins, & Maass,
2020). However, it seems that only one set of results have
been gathered to measure the model’s capacity, and they are
admittedly limited (Valiant, 2017). Therefore, we have chosen
two new avenues for measuring capacity of the model to help
mitigate obstacles using previous methods. We have primar-
ily drawn from a much earlier work, Valiant (2005), due to the
flexibility of the methods proposed there.

Figure 1: This figure shows an implementation of the Neu-
roidal model that is at capacity, with n = 500, d = 128, k = 16,
r = 40. The circles represent neuroids and the gray lines rep-
resent synapses. Each number on the graph represents the
number of interferences counted as a result of JOIN.

Methods
The Neuroidal model primarily consists of a random graph
structure, known as the Erdős-Rényi Gnp model. In this ar-
chitecture we have n nodes that are connected by one-way
edges, with each possible edge determined to exist at cre-
ation by probability p. We assume that each neuron has an
expected number of outgoing edges to be d. Each edge has
a weighted value, which corresponds to the strength of the
synapse of 1

k . All three values of n, d, and k are determined
prior to initialization, and all must maintain quantitative plausi-
bility using current knowledge of neural systems. This allows
us to create a brain-like structure with well understood mathe-
matical properties (Valiant, 2005). We offer a toy visualization
of such a graph model as Figure 1.

We designate each memory to be a set of neurons, which
are expected to be of size r. This value is known as the repli-
cation factor of the model. This factor was defined in previous
work to be subject to several constraints, which were depen-
dent on the specific process used to create memories (Valiant,
2005). In our work, we closely investigate one process, known
as JOIN, which creates memories as a result of pre-existing
memories like so:

1. Fire all neurons in existing memories A and B.

2. Allow some step(s) of time to pass within the system.

3. Collect a new memory C from neurons that fired.

A simplified example of a structure created from this pro-
cess is shown as Figure 2. Interference is counted when new



memories interfere with previously created memories in the
system, a process we will closely describe later. We also
make an additional assumption which add to the complexity
of this study: Neurons may be shared between sets of memo-
ries. This assumption introduces several issues, both theoreti-
cally and empirically, yet we find this quality of the model to re-
main plausible of actual neural activity (Komorowski, Manns, &
Eichenbaum, 2009). We dedicate this study to circumventing
these hurdles by delivering additional mathematical tools and
a simulation of the model (Chowdhury, 2023; Perrine, 2023).
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Figure 2: Example of a new memory created by JOIN from
shared memories A and B.

Theoretical Results
Memory We define a memory simply as an arbitrary set of
nodes within a Gnp graph with biologically plausible choices
of n, d, and k. This concrete coding of discrete items remains
a plausible method for storing memory in biological systems
(Komorowski et al., 2009).

λ-Interference Given two memories U,W , and some num-
ber λ ∈ (0, |W |], we say that U λ-interferes with W if

|U ∩W | ≥ |W |
λ

.

In this case, λ represents a proportion for the amount of
allowed neurons between memories. If this number is ex-
ceeded, then we consider the two memories to be interfering.

Subset Capacity We will have each memory represented
by a subset of the model’s vertex set, V . Each memory is
expected to be of size r. Locally, we will denote the number of
neurons that overlap between two memories as λ. Then we
will represent a global interference threshold of T . We also
require a fudge factor of δ to account for the variance of r
between memories.

Given a set V = {v1, ...,vn} and parameters r,T,λ,δ > 0,
the subset capacity of V is the maximum number of subsets
that for any randomly picked memory U ,

1. |U | ∈ [r−δ,r+δ],

2. n >> 2(r+δ),

3. E[XU ] ≤ T where XU is a random variable denoting the
number of λ-interferences caused due to picking U .

We prove that the probability that one memory interferes
with another memory follows the hypergeometric distribution
(Chowdhury, 2023). Therefore, we show that the capacity of
the Neuroidal model would be upper bounded by
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For brevity, we omit our proofs and related theorems here,
which are in (Chowdhury, 2023). We clarify that the choices of
n, d, and k will affect what r and δ should be when calculating
the analytical capacity. Given that the effects of the initializa-
tion parameters are difficult to analyze, we also investigated
the model in simulation and measured capacity empirically.

Empirical Results

We implemented a simulation of the Neuroidal model.
All details are available in a Python Notebook here:
https://github.com/patrickrperrine/neural-tabula-rasa-
thesis/blob/main/Neuroidal Model Simulation v1 4.ipynb
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Figure 3: Capacity with different number of neuroids

These results show that the shared memory representation
remains worthy of further study, due to the significant increase
in capacity when neurons can correspond to different memo-
ries. We expect the capacity of the shared representation to
continue to grow rapidly when experimenting with larger, more
realistic neural models.

Conclusion

We have initiated new methods for better understanding the
capacity of the Neuroidal model. Value remains with this
model because it works with biological plausible parameters.
Although so far we were only able to simulate it for small val-
ues of number of neurons, larger simulations could yield inter-
esting insights. These results should inspire further research
on the Neuroidal model and related models such as the As-
sembly Calculus (Papadimitriou et al., 2020).
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