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Abstract 

People are known for their ability to learn probabilistic 

rewarding rules of the environment in both laboratory 

and real-world settings. However, in a series of 

experiments, we found that human participants failed to 

learn simple non-linear combinatory rules (e.g., the XOR 

rule of 11→1, 00→1, 01→0, 10→0 with a probability of 0.8), 

even after 320 trials, despite the small feature space for 

possible rules (i.e., including only two binary 

dimensions). This contrasted with the rapid learning of 

repetition or alternation rules in the same experiments. 

To explain why probabilistic XOR rules are difficult to 

learn, we propose a computational model that views rule 

learning as a progressively evolving hypothesis testing 

process. This hypothesis diffusion model assumes that 

(1) the weights assigned to different hypotheses diffuse 

across a network connecting hypotheses that can be 

transformed into each other through a single operation, 

and (2) the diffusion process is evidence-driven. The 

model successfully reproduces the behavioral patterns 

observed under each rule condition. Moreover, the 

model parameters estimated from a single rule condition 

can predict the observed differences in learning 

performance across different conditions.  
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Introduction 

Humans can learn reward-predictive features in 

stochastic environments with multiple linearly-additive 

dimensions (Farashahi et al., 2017; Niv et al., 2015; 

Song et al., 2022) and can also learn deterministic 

reward rules that non-linearly combine multiple 

dimensions (Cohen et al., 2021; Cohen & Schneidman, 

2013). However, learning is poor when the rules are 

both stochastic and non-linearly combinatory (Wang & 

Soltani, 2023). In this study, we conducted three 

experiments to test participants’ learning capacity on 

stochastic reward rules in a 2-by-2 small feature space, 

finding striking failures in non-linear combinatory rules 

that cannot be attributed to the combinatorial explosion 

of feature space. Nor can it be explained by previous 

reinforcement learning (RL) models, unless distinctively 

different initial biases were assumed for different rule 

conditions. Inspired by the hidden Markov model of 

strategy switching (Ashwood et al., 2022), we proposed 

a hypothesis diffusion model based on evidence-driven 

stochastic flows of rule weights in a sparsely connected 

network of hypotheses, which provides a unified 

explanation for human performance in all conditions. 

 

Figure 1: Experimental setting and behavioral results. A, Procedure and the decision rules. B, Performance in each 

experiment. C, Detailed patterns in the prolonged sliced game. Left: Learning curves showing early performance 
plateaus. Right: Participants’ predictions following the 4 different states (e.g., 01: tail (0) and head (1) observed).

Behavioral experiments and results 

In a 320-trial adapted matching-pennies game, 
participants predicted a target player's (“alien”) round 2 
choice based on the two players'  round 1 choices. After 
each prediction, the actual round 2 choices were shown 
as feedback (Fig. 1A). The alien followed one of three 

probabilistic rules (p=0.8): "Repeat" (same choice as 

round 1), "Alternate" (switch choice), or "XOR" (head if 
same choice in round 1, tail otherwise, or vice versa). 

Exp. 1 ("continuous game"): Participants played as the 
alien's opponent; previous trial's round 2 became 

current trial's round 1. Exp. 2 ("sliced game"): 
Participants watched independent game slices. In both, 
participants completed four 80-trial blocks of repeat, 



alternate, and two XOR rules. Exp. 3 ("prolonged 

sliced game"): Each participant completed one 320-
trial block of a single rule. Exp. 1–3  had respectively 
110, 76, and 86 valid participants from Prolific. Due to 
space constraints, only Exp. 3 statistics are reported. 

Failure in learning probabilistic XOR rules Learning 
probabilistic XOR rules was challenging (Fig. 1B), as 
indicated by the proportion of optimality (choosing the 
alien's likely choice). Performance varied across three 

conditions ( F (2, 83) = 17.45, p < .001, 𝜂𝑝
2 = .30), with 

the XOR performance near chance and significantly 
lower than the Repeat and Alternate conditions (post-
hoc tests, ps < .001 with Bonferroni correction), 
suggesting difficulty learning the XOR rule. 

Preference for “all matching” under XOR rule In all 
conditions, participants were more likely to choose 
predictions that agreed with the condition's rule (GLMM, 
ps <. 001). However, in the XOR condition, when the 
alien and human made the same choice in round 1, 
participants also tended to repeat the choice (i.e., 11→1 
or 00→0, ps <. 05), leading to behavioral asymmetry in 
addition to following the XOR rule (Fig. 1C). 

Computational modeling 

The hypothesis diffusion (HD) model (Fig. 2A) 
assumes that hypotheses transformable into each other 
through a single operation are connected. The agent 

assigns weights to different hypotheses and makes 
decisions by weighing their predictions. After receiving 
round-2 feedback, each hypothesis' weight is 
redistributed among itself and connected hypotheses 
through an evidence-driven, biased, and conservative 
diffusion process. As an alternative model, we 
constructed an RL model that updates the weights for 
the Repeat, Alternate, and XOR rules after each 
feedback.  

We fit the models separately to each participant’s 
choice data in Exp. 3. The fits of both the HD and RL 
models agreed with participants’ behavioral patterns 
(Fig. 2BC). However, the HD model outperformed the 
RL model as well as a logistic regression model in 
goodness-of-fit in all conditions (Fig. 2D). 

Moreover, with model parameters estimated in one 
single rule condition, the HD model can cross-predict 
participants’ performances in all three rule conditions 
(Fig. 2E, upper), while the RL model failed to cross-
predict (Fig. 2E, lower). Examining model parameters 
fitted from different conditions reveals that the RL model 
relied on heterogeneous initial bias parameters to 
obtain across-condition differences, which amounts to 
a mere description of the data pattern instead of 
reflecting the underlying learning mechanics. In 
contrast, the HD parameters were homogeneous 
across conditions. That is, its performance differences 
across conditions are emergent properties from the 
hypothesis-diffusion learning process.  

 

Figure 2: A, Hypothesis diffusion (HD) model: connected hypotheses (upper left) weighted for decision-making 

(upper right) and weights redistributed based on prediction accuracy, bias, and source (lower). B & C, Data vs. 

model fits for RL and HD. D, The HD model outperformed the RL and logistic regression models in goodness-of-fit 

(smaller AIC). E, The HD model parameters estimated from every single rule condition can cross-predict task 
performance in all other conditions (upper), while the RL model failed to do so (lower).
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