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Abstract
Finding temporal associations across long timescales
in cognitively demanding tasks, such as delayed match
to sample and parametric working memory, is challeng-
ing for both biological and artificial neural networks.
Gradient-based training of recurrent neural circuit mod-
els for temporal tasks with long time horizons presents
challenges that potentially lead to vanishing or explod-
ing gradients. We leverage dynamical systems theory to
understand the learning dynamics and solution space of
such temporal credit assignment problems in spiking and
firing rate networks. Specifically, we connect this issue
to the Lyapunov exponents of the forward dynamics, de-
scribing how perturbations grow or shrink during forward
passes.

We propose ”gradient flossing”, a method to address
gradient instability in recurrent spiking and firing rate net-
works by controlling the Lyapunov exponents of the for-
ward dynamics throughout learning. We regularize Lya-
punov exponents towards zero, ensuring that the corre-
sponding directions in tangent space grow or shrink only
slowly to facilitate more robust propagation of learning
signals over long time horizons.

This approach improves RNN stability and training suc-
cess in temporal cognitive tasks by regulating the norm
and dimensionality of the gradient signal in backpropaga-
tion through the dynamic adjustment of Lyapunov expo-
nents.
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Models
For rate networks, we consider a conventional model of N
nonlinear rate neurons obeying the dynamics τ

dhi
dt = −hi +

∑
N
j=1 Ji jφ(h j)+ Ii(t) , (Eq 1). Here, the coupling weights Ji j

are drawn independently from a Gaussian distribution with
zero mean and variance g2/N, with g being a gain parame-
ter that controls weight heterogeneity. We use a tanh transfer
function φ(x) = tanh(x). Ii(t) is the external input to each neu-
ron. In the case of spiking networks, we examine a balanced
network of leaky integrate-and-fire (QIF) neurons governed by
the voltage equation τm

dVi
dt = −Vi + Ii(t)+ Iext with exponen-

tially decaying synapic currents τs
dIi
dt =−Ii+τs ∑ j Ji jδ(t−ts

j).
The membrane potential Vi of individual neurons resets from
Vth = 1 to Vre = 0 after a spike. Ji j is initially a sparse di-
rected Erdös-Rényi graph of size N with K synapses per neu-
ron. All non-zero weights are set to − J0√

K
. Thus, the network

settles into a balanced state characterized by asynchronous
irregular activity(van Vreeswijk & Sompolinsky, 1996, 1998;
Brunel, 2000; Renart et al., 2010). Recurrent inhibition dy-
namically cancels the positive external current, Iext = I0

√
K.

We solved the spiking network dynamics by either temporally
discretizing it or through event-based simulations (Engelken,
2023b), and trained the spiking network using surrogate gra-
dients (Neftci, Mostafa, & Zenke, 2019).

Additional Details: Dynamic Stability & Propagation of
Learning Signals in Recurrent Neural Networks: Our ap-
proach is to exploit a link between dynamic stability and the
propagation of learning signals: Lyapunov exponents (LEs)
give the average exponential growth rates of infinitesimal
perturbations in the tangent space of the forward dynam-
ics of an RNN, which also constrains the signal propaga-
tion in backpropagation over long time horizons. Mathemat-
ically speaking, for the discretized RNN dynamics hs+1 =
fθ(hs,xs+1), with recurrent network state h, external input
x, and parameters θ, the gradient of the loss with respect
to θ is evaluated by unrolling the network dynamics in time.
The resulting expression for the gradient is given by: ∂Lt

∂θ
=

∂Lt
∂ht

∑τ Tt(hτ)
∂hτ

∂θ
where Tt(hτ) is composed of a product of

Jacobians Tt(hτ) = ∏
t−1
τ′=τ

∂h
τ′+1

∂h
τ′

. Due to the chain of ma-
trix multiplications in Tt , gradients tend to vanish or explode
exponentially with time (Hochreiter & Jrgen Schmidhuber,
1997; Pascanu, Mikolov, & Bengio, 2013). Recently, it has
been pointed out that Tt(hτ) is closely related to LE ex-
ponents. More specifically, LE are defined as the asymp-
totic time-averaged logarithms of the singular values of the
long-term Jacobian λi = limt→∞

1
t−τ

log(σi,t) where σi,t de-
notes the ith singular value of Tt(hτ) with σ1,t ≥ σ2,t . . .σN,t
(Engelken, 2023a; Park, Sgodi, & Sok, 2023; Lindner, 2021;
Vogt, Puelma Touzel, Shlizerman, & Lajoie, 2022; Engelken,
Wolf, & Abbott, 2020, 2023). Thus, positive LEs imply expo-
nentially growing gradient modes, while negative ones corre-
spond to exponentially vanishing gradient modes.

Gradient Flossing: Idea and Algorithm We introduce gra-
dient flossing, a method that regularizes the singular values
of the long-term Jacobian, thereby enhancing the information
propagation of learning signals. To prevent exploding and
vanishing gradients, we constrain Lyapunov exponents to
be close to zero. This ensures that the corresponding
directions in tangent space grow or shrink slowly on average.
This is achieved by incorporating an additional term in the
loss function, based on the squares of the k largest LEs:
Lflossing = ∑

k
i=1 λ2

i which is computed using differentiable



linear algebra. In Fig. 1C, we show how gradient flossing can
modify the first LE of randomly initialized RNNs to match a
desired target value. In Fig 1D, we then show the same for
multiple LEs.
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Figure 1: Gradient flossing controls Lyapunov exponents
and information propagation of learning signals
A) Exploding and vanishing gradients in backpropagation
through time arise from amplification or attenuation of the
product of Jacobians that form the long-term Jacobian

Tt(hτ) = ∏
t−1
τ′=τ

∂h
τ′+1

∂h
τ′

. This is closely related to Lyapunov ex-
ponents of the forward dynamics that measure average ex-
ponential rates of divergence of nearby trajectories. B) To
improve the information propagation of learning signals, we
introduce gradient flossing, which regularizes the tangent dy-
namics of RNNs. C) First Lyapunov exponent of recurrent
networks over the course of training. Minimizing the mean
squared error between the estimated first Lyapunov exponent
and target Lyapunov exponent λ1 = −1,−0.5,0 by gradient
descent. Ten recurrent networks were initialized with Gaus-
sian recurrent weights Ji j ∼ N (0, g2/N) where values of g
were drawn g∼ Unif(0,1). D) Full Lyapunov spectrum of re-
current network after a different number of Lyapunov expo-
nents are regularized towards zero via gradient flossing.

Additional Results on Challenging Cognitive Tasks We
show that gradient flossing enhances both training speed
and success rate across three challenging cognitive tasks
(Fig. ??). First, we show that in a parametric working mem-
ory task where a variable number of items must be stored and
reproduced by the recurrent network after a delay of d, more
memory items can be successfully recalled with gradient floss-
ing (Fig. 2A, C). Additionally, in a delayed context-dependent
go-nogo discrimination task, gradient flossing enables the re-
current circuit to bridge a longer time horizon, thus facilitating
a more challenging task (Fig. 2B, D). We study two different
versions of the tasks: In the first version, the stimulus and con-
text signal are presented sequentially, we call this the temporal
context-dependent go-nogo task (Fig. 2E, G). In the second
version, the context signal is presented at the same time as
the task stimulus, we call this the spatial context-dependent
go-nogo task (Fig. 2F, H). Furthermore, we show that gradi-
ent flossing during training can further enhance performance
(green line in Fig. 2).
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Figure 2: Gradient flossing improves learning on cogni-
tive tasks that involve bridging long time horizons
A) Test error for recurrent rate networks trained on parametric
memory task yt = xt−d for d = 40 with and without gradient
flossing. Solid lines are medians across 5 network realiza-
tions. B) Same as A for the spatial delayed context-dependent
go-nogo discrimination task. C) Mean final test error as a func-
tion of task difficulty (delay d) for parametric working mem-
ory task. D) Mean final test error as a function of task diffi-
culty (delay d) for delayed context-dependent go-nogo task.
E) Test accuracy for recurrent network trained on temporal
version of context-dependent go-nogo task with gradient floss-
ing during training (green), preflossing (gradient flossing be-
fore training) (orange), and with no gradient flossing (blue) for
d = 70. F) Same as E for spatial version of context-dependent
go-nogo task. G) Test accuracy as a function of task difficulty
(delay d) for temporal version of context-dependent go-nogo
discrimination task. H) Test accuracy as a function of task
difficulty (delay d) for spatial version of context-dependent go-
nogo discrimination task.
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Figure 3: Gradient flossing in spiking network A) Spike
raster before gradient flossing. B) Maximum Lyapunov expo-
nent of spiking network is pushed towards zero during gradient
flossing. C) Spike raster after gradient flossing.
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