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Abstract: 

Reward-related representations are found distributed 
throughout many human subcortical and neocortical 
regions that support different neural processes. These 
representations get used at different points in time for 
related tasks. However, the way these representations 
get re-used and strengthen over time is not well 
understood. To investigate this, we recorded from the 
temporal lobe and prefrontal cortex with intracranial 
electrocorticography (ECoG) while human subjects 
learnt two-choice decisions between two scenes. 
Subjects were able to straightforwardly re-use 
knowledge only when reward contingencies stayed the 
same between the two scenes. Using a Bayesian learner, 
we inferred reward expectations from choice behavior, 
and then measured representations of reward 
expectation in ECoG data. Reward expectations were 
uniquely represented in distributed regions across 
human cortex. The representations of reward 
expectation in the medial temporal lobe and orbitofrontal 
cortex were re-used between the two scenes, only when 
subjects could straightforwardly transfer knowledge 
between the two scenes. Finally, in a separate region, the 
anterior temporal lobe, the strength of reward 
representations as measured by similarity between 
scenes, increased as learning increased. Our findings 
suggest that patterns of activity representing reward 
information are integrated into multiple brain regions, 
get re-used in similar situations, and increase in fidelity 
with learning. 
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Introduction 

Complex behaviors rely on structured representations 
of information (Niv, 2019). Representations in the 
prefrontal cortex have been shown to demonstrate this 

structure through the mixed selectivity of neurons that 
show adaptive coding and highly diverse responses 
that change over time (Fusi, Miller, & Rigotti, 2016; 
Rigotti et al., 2013). Importantly, the same 
representations can be reused in related situations. For 
example, the overlap in responses of neurons to 
variables have been shown to be common between 
experiences that are linked by time, item, or context 
(Cai et al., 2016; Zeithamova & Preston, 2010).  

There is evidence that reward-related representations 
can be found in many distributed regions of subcortex 
and neocortex, including the orbitofrontal, ventromedial 
and dorsolateral prefrontal, cingulate, and parietal 
cortex (Elliott, 2000; Kahnt, Heinzle, Park, & Haynes, 
2010; Rushworth & Behrens, 2008; Vickery, Chun, & 
Lee, 2011). While there is good evidence for 
representations of reward expectation found distributed 
across cortex, there is limited knowledge of when and 
how these representations get learnt and re-used.  

Results 

Here, we investigated the capacity of different regions 
to support reusable representations of reward 
expectation. To do this, we recorded simultaneous 
electrocorticography (ECoG) in temporal and prefrontal 
cortices while human subjects (n=11) performed a task 
in which they learnt two-choice decisions between two 
different scenes, corresponding to two different spatial 



environments within which the choices were presented 
(Fig. 1a).  

Modulation of Reward Expectation  

In an environment where reward outcomes change, an 
agent dynamically learns to adapt the learning rate with 
each choice (Austerweil, 2015; Bartolo & Averbeck, 
2020; Behrens, Woolrich, Walton, & Rushworth, 2007). 
Thus, we modeled the prediction of possible reward 
with a Bayesian framework where the reward 
expectation updates with each choice in proportion to 
the uncertainty in the belief of reward (Fig. 1b). We 
tracked learning at each trial using the absolute 
difference between the expectation for reward and the 
true reward probability (Fig. 1c,d). With each task over 
blocks, the reward expectation error progressively 
improved or decreased, indicating more efficient 
learning, when there was no reward reversal and not 
when there was a reward reversal (Fig. 2e; mixed 
effects across-subject t-test, rev, t(10) = .059, p = .954; 
no rev, t(10) = -2.589, p = .027). 

Re-use of Representations in MTL and OFC 

We hypothesized that when reward information is 
relevant to the task it should be actively represented in 
a way to influence choices and learning so we next 
examined whether the reward expectation is 
represented in the brain. We found that representations 
of reward expectation increased across multiple 
electrodes distributed over multiple brain regions within 
one second prior to when the choice is made (Fig. 2a).  

We next hypothesized that only brain regions that 
represent reward expectation and integrated this with 
the representation of items would have similar 
representations of reward expectation when the 
knowledge of reward associated with the item can be 
transferred between scene 1 and scene 2. Across brain 
regions, the pre-choice representation of reward 
expectation, 1.0 sec prior to when the choice was made, 
in the medial temporal lobe (MTL) and orbitofrontal 
cortex (OFC) was significantly similar between scene 1 
and scene 2 for the item set for which there was no 
reward reversal, but not for the item set for which there 
was a reward reversal (Fig. 2b). 

Strengthening of Representations in ATL 

We next investigated whether the similarity and 
strengthening, or increase in similarity, of the 
representations of reward expectation between scene 1 
and scene 2 played a role in learning. To quantify 
learning in each block we measured how much reward 
expectation error decreased between scene 1 and 

scene 2. Next, we correlated this measure with the 
similarity in representations between scene 1 and 
scene 2 as it varied over blocks. A significant positive 
correlation was found in the ATL, such that as learning 
increases then so did the similarity between scene 1 
and 2, but only for the item set for which there was no 
reversal in reward, or when knowledge can be 
straightforwardly shared between scenes, and not for 
the item set for which there was a reversal in reward 
(Fig. 2c,d). 

Methods 

Behavioral task Subjects were trained through a series 
of “blocks” with instructions about the task shown at the 
beginning. Human subjects were tasked to learn the 
most rewarding choices of two different “item sets”, 
where each item set consists of two items that the 
subject must choose between and whose reward 
probabilities are coupled and sum to one. One item set 
corresponded to a building versus a face, and the other 
item set corresponded to a cutlery versus an animal 
(Fig. 1b). Subjects were tasked to learn the high reward 
probability item in two different scene contexts, a beach 
and a forest. In each block, either beach or forest was 
selected as the scene context for the first 60 trials, 
which we refer to as “context 1”; then the second 60 
trials were carried in the other scene context, which we 
refer to as “context 2.” Subjects were instructed that 
there was a reward reversal between the two different 
scenes in a block for one item set, but no reward 
reversal for the other. 

Reward Expectation We applied Bayes’s rule to 
compute the trial-by-trial posterior P( r | h ), the belief in 
the reward rate r after observing the history of choices 
and outcomes from the environment, h, from the 
product of the prior belief in the reward rate, P ( r ), and 
the likelihood of the observed history of choices and 
outcomes had it been produced by the reward rate, P( 
h | r ).   

Representation similarity Representations can 
change dynamically over time in each context for each 
item set in each block. Thus, we performed a trial-wise 
regression of neural power on reward expectation 
separately for each context and item set in each 
experimental block to derive a [electrode x time] reward 
representation matrix, 𝑊(𝑘, 𝑖), from: 
𝑌!(𝑘, 𝑖)	~	𝑊(𝑘, 𝑖) ∙ 	𝑋! + 	𝛽(𝑘, 𝑖) ∙ 𝐶!, 
where Yt is the 30-80 Hz and 80-120 Hz neural power 
over 30 trials, t, for electrode, k, in a trial timepoint, i. Xt 
is the corresponding relative reward expectation over 
the 30 trials, t. Ct is the choice over 30 trials, t. 



Figures 

 
Figure 1: Reward expectations are modulated 

during reversal learning. a, Example item sets and 
scenes in two trials. b, Example of reward expectation 
inferred over trials in one block. c, Example of reward 
expectation error over trials. d, Calculation example of 
between-scene change, 𝛿, in total reward expectation 

error. e, Learning measured by the block-to-block 
change in 𝛿 reward expectation error. 

 
Figure 2: Reward expectation representations are 

used and strengthen with learning. a, Representation 
of reward expectation. b, Representation similarity 
across regions (MTL, medial temporal lobe; ATL, 

anterior temporal lobe; PFC, lateral prefrontal cortex; 
OFC, orbitofrontal cortex). c, Mean correlations 

between representation similarity and learning, as 
measured by 𝛿 total reward expectation error. d, 

Comparison of ATL similarity and learning. 
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