Optimization of fully differentiable ODE neurons using gradient descent
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Abstract

Neuroscientists fit simulations of single neurons to data.
Fitting morphologically and biophysically detailed neuron
models is computationally expensive as typical gradient-
free approaches, such as evolutionary algorithms, con-
verge slowly for neurons with many parameters. Here we
introduce a gradient-based algorithm using differentiable
ODE solvers, a class of models that scales well to high-
dimensional problems. We employ GPUs to efficiently run
many morphologically detailed neuron simulations in par-
allel and thus fit heterogeneously distributed ion channel
densities. We use this efficient optimization algorithm to
provide a proof of concept by fitting models analogous to
specific experimental conditions in less than 4 hours on
1 GPU. We find that individually stimulating all dendritic
compartments of the model produces outputs that lead to
identifiable models. It reliably converges, even when lim-
ited numbers of recording sites. However, limiting stim-
ulation sites reduces the reliability of this optimization
method. Our approach makes model fitting efficient with
the potential to allow models to have many parameters.
Differentiable neuron models promise a new era of opti-
mizable neuron models with many free parameters, a key
feature of real neurons.
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Figure 1: 6-compartment conductance-based neuron model
with 2 maximal conductance parameters each.

In systems neuroscience, explanation of multi-neuronal

systems often relies on single-neuron models. Depending on
the purpose or scientific question, the form of a neuron model
is determined by the judgment of the modeler. Point neu-
rons are often the neuron model of choice in multineuronal
systems, which abstracts away dendritic detail and separates
these models from biological reality (Schutter, 2008). This
and other dimensionality-reducing assumptions are made be-
cause fitting morphologically and biophysically detailed ver-
sions of these neuron models is a computationally expen-
sive high-dimensional optimization problem (Amsalem et al.,
2020).
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Figure 2: Optimization protocol with differentiable ODE solver
and backprop
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In order to more efficiently optimize neuron models, we
turned to the field of machine learning and sought to use the
gradient-based backpropagation of error (backprop) algorithm
to optimize simple multicompartment neuron models in a su-
pervised learning optimization protocol. The backprop algo-
rithm is used to optimize artificial neural networks in linear
time with respect to the parameters, as opposed to quadratic
time in other gradient-based methods (Gegenfurtner, 1992;
Carnevale & Hines, 2006), allowing the optimization of arti-
ficial neural networks with several magnitudes more param-
eters than typical neuron models (Bianco, Cadene, Celona,
& Napoletano, 2018; Gidon et al., 2020). Backprop requires
that every operation in the “forward” calculation of the model
algorithm is differentiable. We implemented a system of ordi-
nary differential equations (ODESs) describing a conductance-
based neuron model (Gidon et al., 2020) using the python



library PyTorch (Paszke et al., 2019) and used a fully differ-
entiable ODE solver (Chen, Rubanova, Bettencourt, & Duve-
naud, 2019) to produce a voltage trace solution. This differ-
entiable "forward” calculation allows use of the backprop algo-
rithm to optimize a biophysically detailed ODE neuron model
with dendrites.

The ODE neuron model has 2 learnable maximal conduc-
tance parameters per compartment, corresponding to sodium
(gna) and potassium (gx) voltage gated ion channels (Fig. 1).
These parameters correspond to the density distribution of ion
channels across the dendritic tree of the neuron model, which
determines the intrinsic excitability of the neuron. We initial-
ized the optimization protocol by producing a "ground truth”
(GT) model with randomized values for gy, and gx param-
eters and generated a set of 100 voltage trace outputs for
100 different inputs. Using a single GPU, we simulated 100
identical optimizable models receiving these inputs in paral-
lel for each optimization loop epoch, and followed the opti-
mization protocol detailed in Figure 2. After optimization, we
then calculated the difference between the GT parameter val-
ues and the trajectories of the inferred parameters during op-
timization to observe if the optimization protocol helped the
model approach ground truth. Measuring the approximation
to the ground truth parameter values allows us to validate the
effectiveness of this optimization method in multiple simulation
contexts.

Results
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Figure 3: Optimization using input/output of all compartments.

To test if the optimization method is effective under different
experimental design decisions, we tested the impact of lim-
its to the number of patched compartments. We first tested
if the optimization method could work in the best conditions:
stimulating and recording from all 6 compartments of the neu-
ron model. Figure 3AB shows that the optimization protocol
successfully optimizes the neuron model voltage trace output
with a loss that monotonically converges close to zero. Figure
3B shows the trajectories of each parameter over optimization
and Figure 3C shows that the distance from GT approaches

zero before early stopping. The model was effectively opti-
mized in less than 4 hours on a single GPU. This demon-
strates that optimization of a neuron model is effective at fit-
ting the model output to GT output and inferring the original
GT parameters.

We then stress-tested the optimization method by limiting
patched compartment stimulation or recording. This is a loose
analogy to glutamate imaging, glutamate uncaging, and volt-
age dye imaging (Ellis-Davies, 2011; Fino et al., 2009; Aggar-
wal et al., 2023; Aseyev, lvanova, Balaban, & Nikitin, 2023).
The loss curves and ground truth error in Figure 4F shows that
limiting patched compartment stimulation to combinations of
soma, proximal dendrite, and distal dendrite locations reduces
the effectiveness of the method to fit GT output and infer GT
parameters. However, Figure 4L shows that stimulating all
compartments and limiting compartment recordings leads to
successful model fitting. Notably, soma-only stimulation, (Fig.
4E), a common experimental design condition, with full mor-
phology recordings completely fails to fit the GT voltage trace
output or begin to fit the GT parameter values (Fig. 4F). How-
ever, we found using the combination of soma, proximal den-
drite, and distal dendrite patch stimulation had the best limited
stimulation condition performance (Fig. 4B), which shows that
increased dendritic recordings produces helpful data for opti-
mization using the gradient descent. We confirm that stimu-
lating dendrites makes identification of distributed parameters
of dendrites far easier than when using somatic current inputs
only.
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Figure 4: Optimization using input/output of limited compart-
ments

Conclusion

This efficient method was implemented using a single GPU,
which could improve accessibility to model tuning. This op-
timization method has the potential to make tuning high-
parameter biologically realistic neuron models feasible, which
could allow exploration of the heterogeneity, complexity, and
mechanistic detail of neurons in multineuronal systems in both
theoretical and systems neuroscience.
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