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Abstract

Neural networks, recognized as robust models of the
brain, depend on various factors including architectures,
training data, algorithms, and objective functions. This
study explores the influence of image quality in train-
ing data on the representation and performance of neural
networks, and consequently, on their capability to model
brain functions. The "visual diet”—the quality and variety
of images—present in training sets such as ImageNet and
EcoSet, can significantly affect how these models learn
and perform across different classes. By examining how
variations in image quality impact the networks’ internal
representations and overall performance, we aim to better
understand how training data affects the correspondence
between neural network models and the brain’s process-
ing mechanisms. Our main finding is that high-quality
training data varies on the performance metric. A diverse
range of image quality in the training set produces the
most expansive representational spaces. However, the
highest performance in terms of top 1 and top 5 is biased
slightly more towards images with high image quality.
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Introduction

The composition of training datasets for neural networks is
a key area of interest in the field of artificial intelligence and
cognitive neuroscience. One component of a visual training
set is the overall quality of the images used to train the net-
work. Image quality metrics are generally differentiated by
whether the metric utilizes a reference. Reference metrics,
such as peak Signal-to-Noise Ratio (pSNR) and Structural
Similarity Index Measure (SSIM), compare an image against
some representation of an “original” to determine the distor-
tion of the input (Sara, Akter, & Uddin, 2019). By contrast, no-
reference metrics, including Blind/Referenceless Image Spa-
tial Quality Evaluator (BRISQUE) and Natural Image Quality
Evaluator (NIQE), do not use a reference image and instead
use the features of the input image itself to determine its qual-
ity (Mittal, Moorthy, & Bovik, 2012; Mittal, Soundararajan, &
Bovik, 2013). Given that the training sets we are evaluating
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Figure 1: Experiment Schematic and Analysis

do not have a reference, we focused our image quality met-
rics to no-reference metrics.

Our interest in neural networks is due to their ability to
capture various aspects of human vision (Cadieu et al.,
2014; Khaligh-Razavi & Kriegeskorte, 2014; Yamins & Di-
Carlo, 2016). Traditionally, many of these networks have
been trained using ImageNet. However, studies suggest that
manipulating the training sets can significantly enhance their
correspondence with brain activity. For instance, networks
trained on more ecologically valid categories (Mehrer, Spo-
erer, Jones, Kriegeskorte, & Kietzmann, 2021), those that
mirror developmental trajectories (Avbersek, Zeman, & Op de
Beeck, 2021), or use images from cameras mounted on in-
fants, have been found to enhance brain correspondence, net-
work performance, and generalization capabilities (Bambach,
Crandall, Smith, & Yu, 2018; Vogelsang et al., 2018).

For performance we are measuring the neural network’s
ability to classify a given input correctly. Researchers of-
ten use “top-five” and “top-one” performance indicators, which
measure how often the correct label appears in the best five
and one predictions of the model, respectively, to rank net-
work performance (Krizhevsky, Sutskever, & Hinton, 2012).
However, these metrics can only show the final result of a
network’s calculations, and provide no insight into the actual
relationships the network has learned through training. To see
these representations, we extract the last fully connected layer
of the model as an embedding and compare it to embeddings
taken while processing other data inputs.

Methods
Dataset and Metric Choice

The goal of this study was to thoroughly explore the effects
of differences in image quality on the performance of image
classifier neural networks. Thus, we used the EcoSet and
ImageNet datasets, both often used to train image classifier
models, as well as the four commonly used neural network
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architectures, being AlexNet, Inception-v3, ResNet-50, and
VGG16 (Mehrer et al., 2021). We also took differences be-
tween image quality (IQ) metrics into account, and chose
to evaluate training set images using BRISQUE, CLIP-IQA,
CNN-IQA, DBCNN, MUSIQ, and NIQE, due to their demon-
strated correlation with brain data.

Representational Distance
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Figure 2: Outcomes of Fully Connected layer comparison. Bar
graph (top) represents representational distances with MDS of
sample categories (bottom)

Quality Ranges

After applying all aforementioned metrics to all training images
in EcoSet and ImageNet, we sorted the categories within each
dataset by the average 1Q score achieved as well as the 1Q
score range present within the category’s training set. This
allowed us to investigate four potential candidates for an ideal
training dataset: the top and bottom 5% of categories when
sorted by average IQ score and by IQ range, labeled "average
high”, "average low”, "range high”, and "range low”.

We inspected each model’s last fully connected layer, which
serves as an embedding prior to classification, and can pro-
vide insights into the distinctions the model makes, as well as
the top5 and top1 accuracy scores.
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Figure 3: Outcomes of Top-one performance. Each plot rep-
resents the distribution of tests when compared against each
other. Rank 1 corresponds to the test with the best top-one
accuracy score for the given combination of dataset, network
architecture, and metric, and similarly for rank 2, 3, and 4.

Results

Interestingly, differing results were seen in comparing the
model’s embeddings of test images and comparing model
performance itself. “Range_high” performed overwhelmingly
well for embedding distance covered; when comparing the
total distance covered in the embedding for each of the four
candidate categories, “Range_high” had the highest distance
measure in 33 of 48 total dataset-architecture-metric combi-
nations.

For top-one and top-five performance indicators, we mea-
sured the accuracy of the model across all image categories
within the test case before comparing the result to other test
cases used on the same dataset, network architecture, and
IQ metric. We found that results differed not only with those
from the FC layer analysis but also between datasets. Of
the models used on EcoSet, categories with high average im-
age quality scored highest on both top-one (16 of 24 archi-
tecture/metric pairs) and top-five indicators (16 of 24), with
range_high categories usually achieving second (17 and 19 of
24, respectively). On ImageNet, however, avg_high had the
best top-one performance, with range_low scoring second 16
times in top-one and 19 times in top-five. Range_high’s ranked
consistently third and fourth place, with a 13-11 ratio for top-
one and an even 12-12 split for top-five.

Discussion and Future Directions

Our results show that image quality can affect both the per-
formance and internal representation of a neural network, al-
beit in different ways. The next steps are to understand how
these difference affect neural network correspondence with
the brain as well as probe more causal relationships. We
specifically aim to manipulate the image quality training data —
such as increasing the quality of images in categories marked
low-quality or decreasing the quality of images in categories
scoring high or manipulating the ranges. We will then retest
how these changes affect internal representations and perfor-
mance, as well as correspondence with brain representations.
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