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Abstract: 

Sophisticated behavioral tasks are key tools in cognitive 
neuroscience, but pose challenges because the 
cognitive processes that give rise to behavior are often 
incompletely understood. Matching pennies (MP) is one 
such task: a strategic zero-sum game that has been 
broadly used for theoretical and empirical analysis of 
dynamic social interactions across species. 
Disentangled recurrent neural networks (disRNN) are a 
recently introduced deep learning method which allows 
discovering cognitive hypotheses directly from 
behavioral datasets. Here, we apply disRNN to a widely 
studied dataset of non-human primates playing an 
iterative MP game. We find that the discovered models 
provide a better qualitative and quantitative match to 
behavior than classic behavioral models, and reveal 
readily-interpretable cognitive hypotheses. Specifically, 
they show that animal’s behavior can be described as a 
mixture of long-term heuristics such as choice 
perseveration and reward-following, as well as short-
term strategies that contribute to countering the 
opponent’s strategy. 
Keywords: matching pennies (MP); reinforcement 
learning; behavioral models; disentangled RNN (disRNN) 

Introduction 
 

Matching pennies (MP) is a zero-sum game, for which 
an equilibrium or optimal strategy from the game-
theoretic perspective is for each player to randomize 
his/her choice, and make it unpredictable to the 
opponent (von Neumann and Morgenstern, 1944). 
When such a mixed strategy game is iteratively played, 
humans dynamically change their choice as they build 
their beliefs about the opponent’s strategy and also infer 
the opponent’s beliefs on their own strategy over the 
course of the game (Camerer, 2003; Hampton et al., 
2008). Iterative MP has been adopted to investigate 
neural mechanisms of dynamic and strategic decision-
making in animal models. When pitted against a 
computerized opponent that exploited and punished 
any serial dependencies in choice and reward within 
relatively short sequences spanning a few trials, 
animals were able to randomize their choice or even 
counter the opponent’s exploitative strategy deviating 
from the equilibrium strategy (Lee et al., 2004; Seo et 
al., 2014; Tervo et al., 2014).  
 

Choice behavior of rhesus monkeys typically showed a 
mixture of a serial correlation with self- and opponent’s 
past choice that slowly decayed over several trials, and 
an abrupt reduction/removal of the dependency of a 
choice on the choice and reward from the immediately 
preceding trial (Fig. 1, a, c). Therefore, a best human-
derived cognitive model, namely a forgetting Q-learning 
model (fQ) only partially explained animal’s behavior, 
failing to capture the full complexity of the dynamic 
behavior during the game (Barraclough et al., 2004; Ito 
et al., 2009).   
 

 

To discover internal/cognitive strategies that can give 
rise to the observed behavioral phenomena, here we 
adopted a recently developed disentangled recurrent 
neural network (disRNN; Miller et al., 2023). disRNN 
encourages the network to learn sparse 
representations in which each dimension (latent state) 
corresponds to a single factor of variation in the data 
(“disentangling”) by implementing the update rule of 
each latent state in a separate module of sub-networks 
(multilayer Perceptrons, MLPs), and by using 
information bottlenecks imposing a penalty on 
maintaining information within the network and sub-
networks (Fig. 1, b).  
 

For each animal, disRNN identified multiple separable 
strategies - long-term heuristics that track/repeat self-
and the opponent’s choice, mixed with short-term 
strategies that reduce serial correlation produced by 
these heuristics to evade potential exploitation by the 
opponent. Our results demonstrate that disRNN can 
successfully discover readily interpretable cognitive 
strategies intertwined together to generate complex 
behavioral phenomena as in a mixed strategy game. 
 

Methods 
 

Behavioral task. Iterative MP was implemented as a 
binary oculomotor choice task, in which animals chose 
between two targets presented at the left and right side 
of a central fixation target by shifting their gaze 
(Barraclough et al., 2004; Fig. 1, a). The opponent’s 
choice was indicated by a red ring around the chosen 
target. Animals received juice reward only if their choice 
matched the opponent’s. 
 

Modeling. We used a behavioral dataset collected from 
three monkeys (Kim et al., 2007). In forgetting Q-

Figure 1. (a) Trial structure of an iterative MP. (b) 
Schematic diagram of disRNN architecture. (c) Serial 
correlation of a choice with the choices of self (top) and the 
opponent (bottom) over past trials compared with synthetic 
data from models. Inset: quality-of-fit of best fQ, disRNN 
and generic RNN model. 



learning model, choice-specific reward expectation or 
action value was learned through an iterative update as 
follows: 𝑄𝑄𝑡𝑡+1(𝐴𝐴) =  𝛼𝛼𝐹𝐹 ∙ 𝑄𝑄𝑡𝑡(𝐴𝐴) + ∆𝑖𝑖 ,  where 𝛼𝛼𝐹𝐹  is a 
forgetting/decay rate for an old estimate, ∆𝑖𝑖  is an 
incremental change separately after reward (i =1) and 
no-reward (i =0), and A is action. A softmax function 
was used for action selection with the value difference 
between two actions as its input. Parameters were 
estimated to maximize the likelihood of held-out data. 
 

disRNN models were implemented as described in 
(Miller et al. 2023). Best model for each monkey was 
selected to maximize the likelihood of held-out data 
across varying hyperparameters such as the size of 
sub-networks, recurrent network, and penalty scale. To 
examine the qualitative fit of the best disRNN model, we 
simulated choice by pitting each model against the 
computerized opponent using exploitative algorithms 
identical to those used against monkeys during MP.  
 

Results 
 

A best-fitting disRNN model typically comprised a small 
number of recurrent (latent) states updated at each time 
step by simple latent-specific rules that integrate 
observations and latent states from the previous time 
step through open information bottlenecks (Fig. 1, b). 
These models showed a good quality of fit and 
recapitulated individual patterns of serial correlation in 
choice/reward better than the forgetting Q-learning 
model (Fig. 1, c).  

 

Information processing of each latent state (𝐿𝐿𝑡𝑡𝑖𝑖 ) was 
interpretable by the following update rule: 
 

𝐿𝐿𝑡𝑡+1𝑖𝑖 = 𝐿𝐿𝑡𝑡𝑖𝑖 + 𝛼𝛼𝑡𝑡𝑖𝑖 ∙ �𝑅𝑅𝑡𝑡𝑖𝑖 − 𝐿𝐿𝑡𝑡𝑖𝑖 � = �1 − 𝛼𝛼𝑡𝑡𝑖𝑖� ∙ 𝐿𝐿𝑡𝑡𝑖𝑖 + 𝛼𝛼𝑡𝑡𝑖𝑖 ∙ 𝑅𝑅𝑡𝑡𝑖𝑖 
 

where 𝑅𝑅𝑡𝑡𝑖𝑖 is an incremental change (i.e. intercepts in Fig. 
2, c-f). 𝛼𝛼𝑡𝑡𝑖𝑖  is a learning rate – conversely, 1 − 𝛼𝛼𝑡𝑡𝑖𝑖  is a 
decay rate (i.e. slopes in Fig. 2, c-f) that determines how 
fast/slow the latent state is updated with a new 
increment at a given time step. By inspecting how these 
two parameters were determined by observations and 
other latent states, we could analyze what information 
is integrated (processed) through each latent state. We 
will use a specific model discovered for one animal 
(m14) to illustrate this point (Fig. 2). 
 

disRNN identified 4 latent states, each of which 
potentially corresponds to a single strategic component.  
𝐿𝐿1  changed by positive (negative) 𝑅𝑅𝑡𝑡1  after right (left) 
choice with a small learning rate 𝛼𝛼𝑡𝑡𝑖𝑖, thereby reflecting 
self-choice accumulated over many trials (Fig. 2, c). 𝐿𝐿2 
changed by positive (negative) increments 𝑅𝑅𝑡𝑡2, after left 
(right) choice was rewarded or right (left) choice was not 
rewarded, thereby accumulating choice-specific reward 
(equivalently, the opponent’s choice) with a small 𝛼𝛼2 
(Fig. 2, d). 𝐿𝐿1and 𝐿𝐿2 appeared to capture the animal’s 
tendency of tracking the side frequently chosen by self 
and the opponent over many trials in the past. By 
contrast, 𝐿𝐿3  accumulated self-choice with a relatively 

large learning rate (Fig. 2, e). It reset toward 0 after the 
animal switched choice, and then rapidly increased 
(decreased) with repetitive left (right) choice (Fig. 2, g).  
 

Interestingly, 𝐿𝐿4  was conjointly modulated by 𝐿𝐿3 and 
previous reward, likely to reflect a higher-order strategy 
(Fig. 2, f). When 𝑅𝑅𝑡𝑡4 inversely correlated with 𝐿𝐿3, overall 
large 𝛼𝛼4 and its effect on the subsequent choice are 
taken all together, 𝐿𝐿4 was apparently monitoring 
repetitive choice in recent trials and contributing to 
rapidly switching side, with such a tendency particularly 
stronger when the previous choice failed to obtain a 
reward than it was when rewarded (Fig. 2, g).  
 

Could the cognitive strategies identified by disRNN give 
the animal a leverage to win the game?  
We find that the animal’s tendency to temporally 
intermix mutually antagonistic strategies may provide 
an adaptive solution for mixed needs – a need for a  
effort-efficient long-term strategy on the one hand to 
generate a long series of choice to play an iterative 
game, and a need for short-term strategies on the other 
hand to add variability and decorrelate adjoining 
choices, countering the opponent’s exploitation of serial 
correlations produced by the long-term strategies.  
   

Future Directions & Acknowledgements 
 

We plan to design quantitative behavioral analyses, and 
systematic perturbations of latent states to further test 
and validate the cognitive models and strategic 
components discovered by disRNN.  
 

This work was supported by NIH R01NS118463. 

Figure 2: Cognitive strategy discovered by DisRNN. (a) 
Dependency graph of the discovered model. (b) DisRNN 
run with the choices and rewards from an example 
behavioral session. (c-f) Visualization of learned update 
rules. (g) choice decorrelation through 𝐿𝐿3, 𝐿𝐿4modulation 
dependent on a recent streak of repetitive choice. 
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