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Abstract: 

Counterfactual information is integral for optimal value-

based decision-making. Counterfactuals are mental 
representations of alternative, hypothetical outcomes, 
which allow individuals to evaluate chosen and 
unchosen decisions. Aberrant counterfactual thinking is 
associated with multiple psychiatric disorders, like 
depression. While the neural encoding of counterfactual 
outcomes is well-defined, the neural and behavioral 
correlates of how counterfactual feedback affects future 
decision-making is unknown. Using human intracranial 
electrophysiology, we show the influence of counter-
factual feedback on choice behavior is mediated by beta 
oscillations in the anterior insula and amygdala. These 
results provide a potential oscillatory mechanism for 
how previous counterfactual reward outcomes influence 
future decisions.  
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Introduction 

In value-based decision-making, humans evaluate 
choices based on their outcomes. In real-world 
decisions, choices have two types of outcomes, actual 
and counterfactual. Counterfactual thinking, the mental 
representation of alternative, hypothetical outcomes of 
unchosen decisions, is necessary to evaluate choices, 
and dysfunctional counterfactual thinking is a symptom 
of many psychiatric disorders (Howlett & Paulus, 2013). 
Despite the importance of counterfactual processing, 
the mechanism by which counterfactual information 
shapes future decisions is unknown.  

To define the cognitive mechanism that integrates value 
signals from counterfactual rewards and current choice, 
we modeled choice latencies in a risky decision-making 
task that reveals actual and counterfactual outcomes. 
Task behavior was obtained from human epilepsy 
patients during intracranial electrophysiology (iEEG) 
recordings with uniquely high spatiotemporal resolution 
(Parvizi & Kastner, 2018). Anatomical targets for iEEG 
often include regions important for in value-based 
decision-making and representation of counterfactual 
information, including the orbitofrontal cortex (OFC) 
(Camille, 2004; Saez, 2018), anterior insula (aINS) 
(Howlett & Paulus, 2013), anterior cingulate cortex 
(ACC) (Hayden, 2009), amygdala (Amy) and 
hippocampus (HPC) (Coricelli, 2005), and dorsomedial 
(dmPFC) and ventromedial (vmPFC)  prefrontal 
cortices (Van Hoeck, 2015). By combing cognitive 
models of choice behavior and human iEEG data, we 
identified the behavioral and neural mechanisms that 
facilitate processes underlying the integration of 
counterfactual information and choice-related value 
signals to generate risky decisions.  

Methods 

Patients performed a decision-making task with two 
choices: a risky gamble (P(win)=0.5) or a safe reward 
(P(win)=1) (n=150 trials; Fig 1A). After safe choices, 
patients saw the unchosen counterfactual gamble 
outcome. For every trial, we computed a counterfactual 
prediction error as the value difference between the 
actual and counterfactual outcomes: CPE = VA – VC .  
     Choice latencies related to CPE signals were 
quantified as the reaction time (RT) in the following trial. 
Trials with RT values < 300ms were excluded from 
analyses. We used linear mixed effects models with 
subject-level random effects to predict logRT on trial t 
from the CPE value on trial t-1. RT models included 
choicet-1 and gamble EVt-1 as control covariates with 
variance inflation factor scores < 1.5. 
     We fit drift diffusion models (DDMs) using 
hierarchical sequential sampling modeling, a Bayesian 
parameter estimation tool that uses Markov chain 
Monte Carlo methods to evaluate hierarchical DDMs 
(Wiecki, 2013). We constructed hierarchical, linear 
DDMs to model drift rate, v, or decision bias, z, as a 
function of CPE with random subject-level slopes and 
intercepts (Navarro & Fuss, 2009). To evaluate and 
compare model fits, we used posterior predictive 
checks using leave-one-out cross-validation to estimate 
expected log predictive density (elpd-loo).  

     Neurophysiological data was preprocessed by 
removing artifacts from electrical noise and epileptic 
activity to improve signal-to-noise ratios. We used 
complex Morlet wavelet convolution with log spaced 
frequencies to extract oscillatory power from time-
frequency representations (Cohen, 2008). Power 
estimates were extracted from the CPE outcome reveal 
epoch (3s) and z-scored to mean pre-trial baselines for 
cross-electrode analyses. We used mixed effects 
models with electrode-level random effects to predict 
trial-averaged beta (13-30Hz) power from CPEs 
(included control covariates, VIF < 1.5).  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 A. Example trial showing actual and counterfactual 
feedback following safe choice B. Localization of iEEG 
electrodes in ROIs (n=21 subjects)  



Results 

CPEs Decrease Choice Reaction Times To identify a 
putative mechanism for the effect of  CPEs on choice 
computations, we modeled RTs as a function of CPE. 
We observed that RTt was significantly modulated by 

CPEt-1 (=0.019, z=1.97, p < 0.05). Individuals’ 

response rates were dependent on the magnitude of 
preceeding CPEs; larger CPEt-1 values increased 
subsequent RTt,. We then tested whether the 
magnitude of patient-level CPEt-1 random effects was 
correlated with self-reported scores of depression 
symptom severity (Beck et al., 1996). Interestingly, the 
impact of CPEs on RTs was positively correlated with 
depression symptoms (ρ(19) =  0.51, p < 0.02).  

CPEs Modulate Evidence Accumulation by Slowing 
Drift Rate Using hierarchical drift diffusion models, we 
investigated a potential mechanism for CPE modulation 
of decision processes. We hypothesized that the 
observed increases in choice latencies were the result 
of altered evidence accumulation during decision 
behavior following CPE encoding. We modeled the  
cognitive mechanisms underlying decisions as an 
evidence accumulation process driven by drift rate (v) 
and response bias (z). DDMs modeling CPEs as a 
function of drift rate, not bias, best represented subjects’ 
choice latencies (elpd-loodiff = 43.88). Large CPEs 
delayed subsequent choices by slowing evidence 
accumulation via decreasing drift rates.  

 

 
 
 
 
 
 
 
 
Figure 2. Power modulations following CPE reveal are 
specific to beta frequencies in the aINS (n=1subj; n=3elecs) 

Beta Oscillations Mediate the Impact of CPEs on 
Decision-Making We hypothesized that the neural 
mechanisms underlying CPE modulation of subsequent 
decision processes are facilitated by beta oscillations. 
Oscillatory mechanisms involving beta frequencies 
underlie sensorimotor functions, top-down processing 
(Brincat & Miller, 2016),  cognitive control mechanisms 
(Stoll, 2016), decision-making (Spitzer & Haegens, 
2017), and, importantly, reward error encoding (Haufler, 
2022). Preliminary visual examination of time-frequency 
representations revealed increased beta power activity 
aligned to CPE feedback (Fig 2). To ascertain the role 
of beta oscillatory power in CPE-mediated decision 
behaviors, we first validated the encoding of CPE 
signals in trial-by-trial beta power. We modeled 
electrode-level beta power as a function of CPEs and 

control covariates across all regions implicated in 
representing counterfactual information (Fig.1B). We 
found that electrode-level beta power modulations 

significantly driven by CPE (=0.001, z= 2.62; p < 0.01). 

We evaluated this relationship in individual regions by 
aggregating the electrode-level random CPE slopes 
within ROIs. Surprisingly, ROIs most associated with 
counterfactual encoding (OFC, ACC) had minimal CPE 
encoding in beta power (Fig.3A). We hypothesized that 
beta power plays a unique role in counterfactual 
decision-making beyond encoding of CPE value.  

 

 
Figure 3A. CPEs modulate aINS beta (p<0.001) B. The 
CPE:Beta during feedback significantly predicts RT in the 
Amy (p<0.0005) and aINS (p<0.02).  

     Using electrode-level mixed effects models, we 
modeled reaction times RTt  as a function the CPE on 
the preceding trial, beta power, and the coefficient of 
interaction between CPE:beta power. We hypothesized 
that the strength of CPE:beta interactions during 
counterfactual processing would influence the degree 
to which CPEs modulates decision behavior. The 
CPE:Beta interaction from models fit on every electrode 
across ROIs did not significantly predict RTs (p<0.5; 
Fig.3B). However, post-hoc models fit separately for 
each ROI revealed the interaction between CPE:beta 
significantly predicts RTs following counterfactual 
feedback, specifically in the Amy and aINS. Therefore, 
the extent to which CPEs modulate drift rate is 
dependent  on the degree of CPE feedback encoding in 
beta oscillations in the amygdala and anterior insula.  

Discussion 
Taken together, our results show that counterfactual 
feedback alters response to future decisions by slowing 
the rate of evidence accumulation. We identified the 
precise cognitive mechanism underlying choice 
latencies resulting from counterfactual feedback. 
Higher CPE value signals slow the rate of evidence 
accumulation, increasing observed reaction times.  
Importantly, this finding shows that counterfactual 
influences on RTs is the result of a complex cognitive 
process, rather than the downstream effect of 
psychomotor slowing. Finally, we defined a putative 
oscillatory mechanism in the amygdala and anterior 
insula that mediates the influence of CPEs on decisions 
though encoding of CPE values in beta oscillations 
during initial counterfactual feedback.   



Acknowledgments 

This work was supported by the National Science 
Foundation (graduate research fellowship to A Fink), 
and the National Institutes of Mental Health (grants 
number K01MH108815 and R01MH124763 to I.S.)  

References 
 

Beck, A. T., Steer, R. A., & Brown, G. (1996). Beck 
Depression Inventory–II [dataset].  

 
Brincat, S. L., & Miller, E. K. (2016). Prefrontal Cortex 

Networks Shift from External to Internal Modes 
during Learning. Journal of Neuroscience, 36(37), 
9739–9754.  

 
Camille, N., Coricelli, G., Sallet, J., Pradat-Diehl, P., 

Duhamel, J.-R., & Sirigu, A. (2004). The 
Involvement of the Orbitofrontal Cortex in the 
Experience of Regret. Science, 304(5674), 1167–
1170. 

 
Cohen, M. X. (2008). Assessing transient cross-

frequency coupling in EEG data. Journal of 
Neuroscience Methods, 168(2), 494–499.  

 
Coricelli, G., Critchley, H. D., Joffily, M., O’Doherty, J. 

P., Sirigu, A., & Dolan, R. J. (2005). Regret and its 
avoidance: A neuroimaging study of choice 
behavior. Nature Neuroscience, 8(9), 1255–1262. 

 
Haufler, D., Liran, O., Buchanan, R. J., & Pare, D. 

(2022). Human anterior insula signals salience and 
deviations from expectations via bursts of beta 
oscillations. Journal of Neurophysiology, 128(1), 
160–180.  

 
Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). 

Fictive Reward Signals in the Anterior Cingulate 
Cortex. Science, 324(5929), 948–950.  

 
Howlett, J. R., & Paulus, M. P. (2013). Decision-

Making Dysfunctions of Counterfactuals in 
Depression: Who Might I have Been? Frontiers in 
Psychiatry, 4.  

 
Navarro, D. J., & Fuss, I. G. (2009). Fast and accurate 

calculations for first-passage times in Wiener 
diffusion models. Journal of Mathematical 
Psychology, 53(4), 222–230.  

 
Parvizi, J., & Kastner, S. (2018). Promises and 

limitations of human intracranial 
electroencephalography. Nature Neuroscience, 
21(4), 474–483.  

 
Saez, I., Lin, J., Stolk, A., Chang, E., Parvizi, J., 

Schalk, G., Knight, R. T., & Hsu, M. (2018). 
Encoding of Multiple Reward-Related 
Computations in Transient and Sustained High-
Frequency Activity in Human OFC. Current Biology, 
28(18), 2889-2899.e3.  

 
Spitzer, B., & Haegens, S. (2017). Beyond the Status 

Quo: A Role for Beta Oscillations in Endogenous 
Content (Re)Activation. Eneuro, 4(4), 
ENEURO.0170-17.2017.  

 
Stoll, F. M., Wilson, C. R. E., Faraut, M. C. M., Vezoli, 

J., Knoblauch, K., & Procyk, E. (2016). The Effects 
of Cognitive Control and Time on Frontal Beta 
Oscillations. Cerebral Cortex, 26(4), 1715–1732.  

 
Van Hoeck, N. (2015). Cognitive neuroscience of 

human counterfactual reasoning. Frontiers in 
Human Neuroscience, 9.  

 
Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: 

Hierarchical Bayesian estimation of the Drift-
Diffusion Model in Python. Frontiers in 
Neuroinformatics, 7.  

 
 


	Beta Oscillations Mediate Responses to Counterfactual Feedback During Decision-Making
	Alexandra Fink (alexandra.fink@icahn.mssm.edu)
	Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
	Salman Qasim (salman.qasim@mssm.edu)
	Jacqueline Overton (jacqueline.overton@mssm.edu)
	Lizbeth Nunez (lizbeth.nunez@mssm.edu)
	Xiaosi Gu (xiaosi.gu@mssm.edu)
	Ignacio Saez (ignacio.saez@mssm.edu)
	Department of Neurosurgery and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY
	Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
	Introduction
	Methods
	Results
	CPEs Decrease Choice Reaction Times To identify a putative mechanism for the effect of  CPEs on choice computations, we modeled RTs as a function of CPE. We observed that RTt was significantly modulated by CPEt-1 ((=0.019, z=1.97, p < 0.05). Individua...
	CPEs Modulate Evidence Accumulation by Slowing Drift Rate Using hierarchical drift diffusion models, we investigated a potential mechanism for CPE modulation of decision processes. We hypothesized that the observed increases in choice latencies were t...
	Beta Oscillations Mediate the Impact of CPEs on Decision-Making We hypothesized that the neural mechanisms underlying CPE modulation of subsequent decision processes are facilitated by beta oscillations. Oscillatory mechanisms involving beta frequenci...

	Acknowledgments

