Adaptive learning using attractor switches in recurrent neural networks
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Abstract

Behaving adaptively requires determining when to create
new state-action associations, and when to modify ex-
isting ones. Normative probabilistic models can accom-
plish this, but are computationally demanding and require
strong assumptions. Which approximations to normative
models brains use to avoid these difficulties remains un-
clear, however. Drawing inspiration from work showing
thalamo-cortico-basal-ganglia loop involvement in adap-
tive learning, we develop and characterize a neural net-
work model that builds new state-action associations via
Hebbian learning between cortex and striatum when sur-
prise (computed as the entropy of neural responses) is
elevated. We test our model on a predictive inference
task including change-points, and show that it captures
statistics of normative models, human behavior, and in-
dividual differences. The mechanisms in our model may
therefore support state-action representation dynamics
in-vivo, and differences in them may account for individ-
ual differences in adaptive behavior.
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Previous research put forward normative models based on
Bayesian probability theory to explain how people adjust the
impact of new information on their beliefs, a phenomenon
known as adaptive learning. However, these models rely
on knowing the generative process producing both observed
data (Fearnhead & Liu, 2007) and any abrupt changes in la-
tent variables (Steyvers & Brown, 2005). Full Bayesian infer-
ence models are computationally costly (Wilson et al., [2010),
but their performance can be approximated via error-driven
learning using dynamic learning rates (Nassar et al., 2010,
2012). Unfortunately, approximate models still set learning
rates based on change-point probabilities and latent-state es-
timation uncertainty, which require generative process knowl-
edge. This suggests that learning rate signals are context-
agnostic, in contrast with previous work indicating the opposite
(D’Acremont & Bossaerts, 2016; Nassar et al., 2019).

To account for context-dependent learning, recent work
suggests that adaptive learning can be re-framed as a trade-
off between updating a current belief and establishing a new
one, making it a form of structure learning (Linda et al.,
2021). The authors suggest that orthogonalizing state-action
mappings by recruiting distinct neuronal populations for novel
states would avoid interference between learning episodes.
Inspired by such a proposal, previous work (Razmi & Nassar,
2022) used a two-layer feed-forward network to build state-
action pairs with distinct neurons to model human adaptive
learning. However, previous work has not tackled how the
brain may recruit novel neuronal population to build new state-
action pairs, and what would be the emergent behavioral prop-
erties of such a mechanism.

However, empirical observations may provide a framework
for answering the question above. First, task-relevant repre-
sentations are often coded in neural population attractors (Eb-

itz & Hayden, [2021), which can emerge in recurrent neural
networks (Brunel, 2003} Hopfield, |1982; Litwin-Kumar & Do-
iron, |2014; Maes et al., 2020; Recanatesi et al., [2022). Sec-
ond, extensive work shows context information in hierarchi-
cally structured tasks is available within cortico-basal ganglia
loops, and that mnemonic information in working memory is
updated using corticostriatal circuits (Chatham et al., 2014).
Finally, thalamocortical projections enable switches between
neural representation in the cortex, as shown by experimental
studies (Remington et al., 2018; Wang et al., |2018) and sup-
ported by theoretical work (Calderon et al., [2022; Recanatesi
et al.,[2022).

Results

Inspired by the cortico-basal-ganglia loop and incorporat-
ing the different ideas discussed above, we propose LEIA
(Learning as Entropy-Induced Attractor state switches), a bio-
logically inspired model that can learn to represent new state-
action pairs, without needing knowledge of specific genera-
tive models. In everyday experience, adaptive learning typi-
cally unfolds sequentially: we first produce actions then ob-
serve outcomes which we learn from. Iterating this process
we adapt our learning based on the statistics of our environ-
ments. Our model follows the same logic by first producing an
action and then observing the environmental response, poten-
tially producing a prediction error to be learned from. Crucially,
the magnitude of the prediction error is interpreted in terms of
observation statistics to determine a variable learning rate.
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Figure 1: LEIA structure. Our model is composed of three
modules: The RNN-state module (yellow area) represents the
context as a fixed point attractor state. The Action Selection
module (cyan area). The motor output module representing
action execution (purple area).
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To produce actions, a latent state representation in cortex,
modeled as an RNN, is read by a basal ganglia network. The
recurrent network encodes latent state representations as at-
tractor states (Fig. 1). We use a symmetrical matrix with posi-
tive diagonal elements encoding orthogonal states and nega-
tive off-diagonal elements for inhibition to implement these at-
tractors. The RNN projects to the basal ganglia, and in partic-
ular to “Go” cells in a striatal layer, which represent the action
currently associated with the RNN’s hidden state. This action



representation is propagated via the BG through the connec-
tions from striatal "Go” cells to the globus pallidus (GP), and
then from GP to the motor thalamus, in line with known neuro-
biology. The motor thalamus then projects to the motor cortex,
which executes the action.

Observation-based feedback (supervision) arrives at the
motor cortex, which projects back to the striatum and thala-
mus. When the supervised action is different from the pre-
dicted one, the supervised representation in motor thalamus
is far from the proposed one, and as a result, surprise, com-
puted as the entropy of the layer’s firing rate is also high. Sur-
prise is then used to induce hidden state transitions in the
RNN, implemented using an asymmetric recurrent weight ma-
trix. Thus, high entropy induces an attractor state transition in
the RNN, nonlinearly with respect to prediction error, there-
fore implementing an adaptive learning rate. The neurons in a
given attractor state become coupled via Hebbian learning in
cortico-basal-ganglia projections to the currently supervised
actions, reinforcing existing state-action pairs when prediction
errors are low or creating new ones when prediction errors are
high.
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Figure 2: A. Model and human learning rate dynamics. The
solid blue line represents the average human learning rate
curve after change-points. Dashed lines represent model
learning rates using different entropy thresholds. Light blue
shading shows participant variability (SDs). B. Coefficients
from our regression model that capture prediction error driven
(B1), change-point probability driven (j3,), and relative uncer-
tainty driven learning (B3).

We tested our model on a predictive inference task and
compared it with data collected from 32 participants doing the
same task (McGuire et al.,2014). The task required predicting
upcoming data points given previous observations. All data
points were produced by a generative process with statistics
that changed abruptly over time. As in previous work, we com-
puted learning rates for participant and model predictions as
functions of post-change-point trial numbers (Razmi & Nassar,
2022). We observed that participants’ average learning rates
decreased after change-points (Fig 2. solid blue line). We
applied our model using different entropy thresholds and per-
formed the same adaptive learning rate analysis (Fig. 2). The
results show that LEIA can capture not only trends in adap-
tive learning rates, but also individual differences. To better

characterize both model and human behavior, we ran a re-
gression model predicting learning rates (equation above Fig
2.) (McGuire et al., |2014). The model includes parameters
quantifying prediction error (PE, B1), change-point probabil-
ity (CPP, B2) and relative uncertainty (RU, 3) driven learning.
Fig. 2B shows that LEIA captures the rank order of human
coefficients and their approximate values.

One shortcoming of our model, as described thus far, is
that it is forced to create new states whenever large prediction
errors are observed. However, in many settings, these may re-
flect returns to previous states. To address this, we extended
the model by introducing a learnable projection from motor
cortex to the RNN gated by surprise. When large prediction
errors cause surprise, but the supervised action suggests the
latent state is old (trial 20) then the model will switch into pre-
viously seen attractors instead of learning anew. The impact
on behavior is illustrated in fig. 3A.
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Figure 3: A. An illustrative example of the reversal learning
model. The red line and blue line show predictions of the
basic model and reversal learning model, respectively. Both
models update their predictions after a change-point. How-
ever, the reversal model can jump back to previous states and
use learned associations after a reversal-point. B. Quantita-
tive analysis. The X-axis shows trial numbers, and the Y-axis
shows the average mean square error (MSE) between predic-
tions and the generative means for 5 processes with different
noise levels. The shaded area shows the SEM across gener-
ative processes.

To summarize, our model shows how simple, established
biological mechanisms (attractor networks, Hebbian learning,
and surprise) can reproduce human latent-state update dy-
namics. Specifically, it shows that splitting representations
when events are surprising, and incrementally updating them
when events are not, can account for subjects’ behaviors.
These mechanisms can be tested using neural data from re-
gions such as OFC, which are involved in state representation.
They also predict that state representations could be contin-
uously modified, such that neurons representing one state
could gradually come to represent a completely distinct one
if observations changed slowly. Likewise, our results predict
that heightened surprise could pathologically fractionate indi-
vidual states, leading to poor generalization over observations
generated by individual latent states.
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