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Abstract
The functional relationships between early- and mid-level
retinotopic regions of interest (ROIs) of the human visual
cortex are not entirely understood. We address this gap
by introducing Relational Neural Control (RNC), a neural-
control-based method that jointly controls the activity in
multiple ROIs by selecting images that align or disentan-
gle their responses. We applied RNC on retinotopic vi-
sual cortex using the Neural Encoding Dataset (NED), a
massive dataset of synthetic fMRI responses to naturalis-
tic images. RNC found stimulus images that significantly
aligned or disentangled both univariate and multivariate
responses between retinotopic areas, and these control-
ling images contained interpretable visual patterns. Our
contributions are threefold. First, we provide new quan-
titative and qualitative findings on functional similarities
and differences across retinotopic areas. Second, we in-
troduce RNC as a generalist method for controlling neu-
ral responses and uncovering functional relationships
across the brain. Third, we release NED with tutorials,
hoping it will boost research in cognitive computational
visual neuroscience.
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Introduction
Early- and mid-level retinotopic ROIs of the human ventral vi-
sual stream (i.e., V1, V2, V3, V4) implement key stages of vi-
sual information processing. However, the functional relation-
ships of these regions remain incompletely known: how are
these ROIs quantitatively encoding visual information, what vi-
sual information is being encoded, and how are these proper-
ties changing between ROIs? To address these questions, we
introduce Relational Neural Control (RNC), a neural-control-
based (Bashivan, Kar, & DiCarlo, 2019; Lehky, Sejnowski,
& Desimone, 1992; Ponce et al., 2019; Walker et al., 2019)
method that jointly controls multiple ROIs by selecting visual
stimuli that either align or disentangle their responses.

Methods
Dataset
We trained fMRI encoding models (St-Yves & Naselaris, 2018)
of retinotopic ROIs of all 8 Natural Scenes Dataset (NSD) sub-
jects (Allen et al., 2022), using different random seeds and up
to 9,000 naturalistic stimulus images per subject, and used
the trained models to predict fMRI responses for all 73,000
NSD images. This large battery of synthetic fMRI responses
allowed us to investigate, through RNC, the functional proper-
ties of retinotopic ROIs in an exploratory, data-driven fashion.

Experiments
To uncover functional relationships between early- and mid-
level retinotopic areas, we implemented RNC independently
to the synthetic fMRI responses of each pairwise ROI combi-
nation (i.e., V1 vs. V2, V1 vs. V3, V1 vs. V4, V2 vs. V3, V2

vs. V4, V3 vs. V4). Furthermore, since the visual information
contained in fMRI responses can be investigated at both the
global mean and the population code level, we implemented
two RNC algorithmic variants: univariate and multivariate con-
trol.

Univariate Control Univariate control assumes that visual
information is encoded at the level of univariate responses
(i.e., the average responses across all voxels within a ROI).
This variant used a ranking procedure to find stimulus images
that best aligned or disentangled the univariate responses be-
tween ROI pairs. This resulted in four neural control conditions
(25 controlling images per condition): two control conditions
in which both ROIs have aligned univariate responses (i.e.,
both ROIs have either high or low responses), and two control
conditions in which both ROIs have disentangled univariate
responses (i.e., one ROI has high responses while the other
ROI has low responses, or vice versa).

Multivariate Control Multivariate control assumes that vi-
sual information is encoded at the level of multivariate re-
sponses (i.e., the population response patterns of all voxels
within a ROI). This variant used genetic optimization (Ponce
et al., 2019) to find stimulus images that best aligned or
disentangled the multivariate responses between ROI pairs,
as measured by representational similarity analysis (RSA)
(Kriegeskorte, Mur, & Bandettini, 2008). This resulted in two
neural control conditions (50 controlling images per condition):
one control condition in which both ROIs have aligned multi-
variate responses (i.e., high RSA correlation score), and one
control condition in which both ROIs have disentangled multi-
variate responses (i.e., low RSA correlation score).

Subject Cross Validation To assess whether the RNC re-
sults generalize across subjects, we trained and tested both
RNC variants in a leave-one-subject-out fashion: we found
the controlling images on N-1 subjects, and tested them on
the left out subject, for all 8 subjects.

Results and Discussion

Both RNC variants found stimulus images that successfully
aligned and disentangled the fMRI responses between retino-
topic ROIs (Figure 1).

For univariate control, images that aligned both ROIs led
to higher absolute univariate responses compared to im-
ages that disentangled them, and disentangling images led to
higher absolute univariate responses in pairs of non-adjacent
(e.g., V1 vs. V4) compared to adjacent (e.g., V2 vs. V3) ROIs
(Figure 1A, upper triangular matrix). These observations
are in line with the geometry of manifolds of univariate re-
sponses for all NSD images (Figure 1A, lower triangular ma-
trix). These manifolds indicate a positive relationship between
the univariate responses of both ROIs (i.e., high alignment),
and that this relationship is strongest for adjacent ROIs. Sim-
ilarly for multivariate control, images that aligned both ROIs
resulted in RSA correlation scores very close to ceiling (i.e.,
r=1), the disentangling images significantly decorrelated ROI



Figure 1: Results of RNC applied to retinotopic ROIs of the 8 NSD subjects. A. Neural control scores for the univariate RNC variant. B.
Examples of controlling images for the univariate RNC variant (V1 vs. V4 comparison). C. Neural control scores for the multivariate RNC
variant. D. Examples of controlling images for the multivariate RNC variant (V1 vs. V4 comparison).

pairs responses, and pairs of non-adjacent ROIs could be
best decorrelated (Figure 1C). These results suggest that
retinotopic ROIs might share both functional similarities and
differences in visual information processing, that the similari-
ties might be more pronounced, and that the differences might
increase the further away two ROIs are from each other.

Next, we visually inspected the controlling images (here we
describe the images from the V1 vs. V4 comparison). For uni-
variate control (Figure 1B), the disentangling images suggest
that V1 is more responsive (than V4) to high spatial frequen-
cies (e.g., vegetation), and V4 is more responsive (than V1) to
objects on low spatial frequency backgrounds (e.g., planes on
a sky background). High spatial frequencies and objects are
both present in aligning images leading to high univariate re-
sponses in both ROIs (e.g., objects on cluttered backgrounds),
whereas they are both lacking in aligning images leading to
low responses in both ROIs (e.g., small or no objects on uni-
form backgrounds). This suggests that two ROIs might result
in aligned responses not only due to functional similarities, but
also in cases where these ROIs preferentially respond to dif-
ferent visual information, which is either co-existing or co-non-
existing in controlling images. For multivariate control (Figure
1D), the aligning images often contained empty regions (e.g.,
the sky) in the upper half, whereas the disentangling images
did not. Thus, since V1 and V4 are both retinotopic areas,
alignment might be largely driven by both ROIs similarly en-
coding topological properties of images (e.g., the spatial loca-
tion of objects).

Together, we propose RNC, a new neural-control-based
method for discovery of neural functional relationships, and
showcase its applicability and potential on early- and mid-level
retinotopic visual ROIs, whose visual information encoding
properties are not well understood (we are currently collecting
fMRI responses for the univariate and multivariate controlling
images to validate our findings on real neural data). RNC has

three key features. First, given that the brain is an intercon-
nected system, functional properties are best understood if
taking into account cross-regional relationships: RNC uncov-
ers both functional similarities and differences between sev-
eral brain regions. Second for a multifaceted understanding
of functional properties, RNC provides both quantitative (i.e.,
neural control scores) and qualitative (i.e., controlling stim-
uli) solutions. Third, RNC is a flexible method which can be
adapted to different data modalities (e.g., fMRI, ECoG, behav-
ior, AI models); cognitive modalities (e.g., vision, language,
audition), stimuli (e.g., hand-picked parameterized images,
text from large language corpora, AI-generated audio), data
information levels (e.g., univariate responses, multivariate re-
sponses, frequency oscillations), spatial scales (e.g., single
neurons, populations of neurons, entire brain areas), relation-
ship complexities (e.g., comparing functional relationships be-
tween two, three or more ROIs), and research approaches
(e.g., hypothesis-based, exploratory).

Tutorials and NED Release
To facilitate RNC adoption and the discovery of new functional
relationships between visual areas, we created online tutori-
als1 where users can interactively implement univariate and
multivariate control on the Neural Encoding Dataset (NED):
synthetic fMRI responses for 150,000 naturalistic images,
over all 8 NSD subjects, and a choice of 23 ROIs spanning the
whole visual hierarchy. We also release NED2, hoping it will
contribute to the cognitive computational visual neuroscience
field both practically and paradigmatically: practically, by being
immediately usable for hypothesis testing, data-driven explo-
ration, methods development, and model building; paradig-
matically, by introducing a new research paradigm centered
on synthetic large-scale neural datasets.

1https://www.alegifford.com/projects/rnc
2https://www.alegifford.com/projects/ned
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