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Abstract
Relating the coordinated activity of neurons to cognitive
functions is a fundamental challenge in neuroscience.
While experimental evidence indicates these neuronal
populations act as core computational units, quantify-
ing these population codes in relation to their functional
roles has remained elusive. Prior approaches based on
representational geometries, functional alignment or di-
mensionality reduction have faced limitations in robustly
linking neural population structure to computation across
scales and modalities. Here, we fill this gap by introduc-
ing effective Geometric measures from Correlated Mani-
fold Capacity theory (GCMC), a framework that employs
analytical methods from statistical physics, to connect
the geometry of neural population activities to readout
performance, thereby quantifying coding efficiency. Ap-
plying this to diverse neural recordings across organisms
and tasks, we demonstrate multi-scale analyses previ-
ously inaccessible. These include tracking changes in
coding efficiency and geometry across brain regions, re-
vealing task-relevant manifold dynamics over time, and
characterizing representational changes during learning.
The geometric measures serve as interpretable descrip-
tors relating the structure of coordinated neural popu-
lation activity to embedded computations. Our frame-
work provides a general and principled approach for map-
ping neural population codes to their functional roles, en-
abling data-driven insights into the neural underpinnings
of perception and behavior.
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Introduction
Neurons collectively represent task-relevant information in the
brain (Yuste, 2015; Saxena & Cunningham, 2019). In neu-

roscience we informally call the collection of neural response
vectors to some given task condition or input stimulus a “neu-
ral manifold” (see Fig. 1a for some examples) (Chung & Ab-
bott, 2021). The neural manifold principle postulates that
the geometrical, statistical, and structural properties of these
manifolds are highly relevant to the study of the functional
roles of population representations (Chung & Abbott, 2021;
Kriegeskorte & Kievit, 2013; Kriegeskorte & Wei, 2021).

Storage capacity (Gardner, 1988; Brunel, Nadal, &
Toulouse, 1992) measures the amount of linearly decodable
information per neuron. Despite being theoretically used to
quantify neural population coding in a wide range of mod-
els (Clopath, Nadal, & Brunel, 2012; Rubin, Abbott, & Som-
polinsky, 2017), it has been challenging to estimate the capac-
ity in high-dimensional and heterogeneous data. The Man-
ifold Capacity Theory (MCT) (Chung, Lee, & Sompolinsky,
2018) adopts the formalism of statistical physics and battle the
curse of dimensionality via deriving the low-dimensional ef-
fective geometry underlying the data. By connecting capacity
to effective geometry through an analytical formula, the MCT
further suggests the definition of computationally relevant ge-
ometric terms such as effective dimension and effective ra-
dius of neural manifolds. These effective geometric mea-
sures have led to applications in analyzing neural represen-
tations across biological datasets (Yao et al., 2023; Paraouty
et al., 2023; Froudarakis et al., 2020) and artificial neural net-
works (Cohen, Chung, Lee, & Sompolinsky, 2020; Dapello et
al., 2021; Kuoch et al., 2023). However, the effective manifold
geometric measures from MCT are ignorant to neural corre-
lations, which play crucial roles in neural information process-
ing (Averbeck, Latham, & Pouget, 2006; Clopath et al., 2012).
Consequently, they have been limited to datasets with low cor-
relations and sometimes yield inaccurate approximations to
capacity (Wakhloo, Sussman, & Chung, 2023).



Figure 1: Manifold geometry as intermediate descriptors
for multi-scale neural data analysis. a, Examples of using
manifolds as analysis units. These manifolds lie in the neu-
ral state space with each coordinate being the neural activity
of a recording unit. Left to right: human fMRI recordings on
THINGS dataset (Hebart et al., 2023), where a manifold cor-
responds to a stimuli category and a region of interest (ROI);
a monkey delayed center-out reaching task, where a mani-
fold corresponds to a target; an auditory decision making task
in mouse posterior parietal cortex (Plitt & Giocomo, 2021),
where a manifold is associated to the decision outcome. b,
Effective manifold geometric measures serve as bridges be-
tween the neural activity space and the behavior/perceptual
space. We define effective geometric measures on top of the
anchor geometry. The table shows the qualitative relationship
between each measure and the capacity.

Results
In this work, we introduce effective Geometric manifold mea-
sures from Correlated Manifold Capacity theory (GCMC)
(Fig. 1b). Our contributions are three-fold: (1) GCMC incor-
porates the complex correlation structure via new effective
geometric measures, which explicate how manifold geometry
influences downstream computational efficiency. (2) GCMC
connects noise correlations to manifold geometry, hence it
unifies the concept of correlations at different system scales.
(3) GCMC enables multi-scale data analysis such as quantify-
ing the spatial progression of encoding efficiency across brain
regions (Fig. 2a), revealing task-relevant temporal dynamics
(Fig. 2b), and characterizing the variances and invariances in
learning (Fig. 2c). We demonstrate the power and the appli-
cability of GCMC in a wide spectrum of datasets (Freeman,
Ziemba, Heeger, Simoncelli, & Movshon, 2013; Majaj, Hong,
Solomon, & DiCarlo, 2015; Hebart et al., 2023; Perich et al.,

2018; Kiani, Cueva, Reppas, & Newsome, 2014; Kiani et al.,
2015; Plitt & Giocomo, 2021; Najafi et al., 2020) with vari-
ous task modalities (e.g., vision, perceptual decision, motor,
spatial memory), various model organisms (e.g., mice, mon-
keys, humans, artificial neural networks), and various record-
ing methods (e.g., electrophysiology, calcium imaging, fMRI)
(Fig. 1a). Finally, the effective manifold geometric measures
can be conceptualized as order parameters for phases associ-
ated with computational efficiency, aiding in the generation of
data-driven hypotheses and latent embedding. In summary,
GCMC opens up opportunities to explore new neuroscience
questions at the neural population level.
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