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Abstract: 

In recent years, there has been a surging interest in high 
spatial resolution (high-res) fMRI at 7T, given the obvious 
benefits of increased BOLD contrast and spatial 
resolution compared to 3T fMRI. Even though 7T high-res 
fMRI is often limited to partial brain coverage and has 
mostly been applied to primary cortices, a growing 
interest has arisen to image sub-cortical regions, such as 
the hippocampus. Unfortunately, inter-session 
registration of high-res fMRI data remains challenging, as 
high-res fMRI is extremely sensitive to differences in 
head position and orientation, which can result in 
distortions, as well as regions of dropouts and artefacts. 
Here, we present a workflow that has been developed for 
the preprocessing of small field-of-view, multi-session 
and sub-millimetre resolution fMRI data of non-
neocortical structures. Using two metrics to evaluate the 
quality of image registration, we show that our pipeline 
performs exceptionally well on multi-session high-res 
fMRI data acquired over the course of two days. In 
addition, the pipeline was successfully applied to all 
subjects, allowing for a meaningful analysis of 
hippocampus layers. 
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Introduction 

With the advent of 7T scanners, researchers are now 
able to image the human brain at an unprecedented 
mesoscopic scale. One growing body of research work 
has been devoted to investigating and validating layer-
fMRI under various experimental settings, such as 
during episodic memory tasks, language processing or 
working memory (Maass et al., 2014; Sharoh et al., 
2019; Finn et al., 2019). Most research studies have 
examined activity in cortical layers in the primary 
cortices due to a well-established correspondence 
between cortical depths and cytoarchitectonic cortical 
laminae (Finn et al., 2021). By contrast, laminar fMRI 
studies targeting subcortical brain sites are limited, due 
to acquisition and analysis challenges in addition to the 
inherent variability in the human brain between relative 
cortical depth and underlying neuronal layers. 

Despite impressive demonstrations of sub-millimetre 
fMRI imaging, there is still a noticeable lack of readily-
available packages that can accurately preprocess ultra 
high-field resolution fMRI data, particularly when small 
fields-of-view are involved and data is acquired over 
multiple sessions. In addition, preprocessing pipelines 
that have been used in the literature are most often 
custom-tailored to the needs of each specific project, 
and, therefore, tricky to generalise to other datasets. A 
robust pipeline that can be empirically evaluated is, 
thus, of paramount importance.  

We present a stable and robust containerised BIDS-
compliant pipeline that requires minimal input from the 

user and that can be applied to a multitude of ultra high-
resolution datasets building upon our previous work 
(Kashyap et al., 2021). The integrated workflow 
primarily uses ANTs 
(http://www.github.com/ANTsX/ANTs) for a majority of 
registration steps, as well as tools from community 
standard neuroimaging software (such as, Freesurfer, 
SPM, AFNI, FSL) for various intermediate steps such 
as skull-stripping and denoising. 

Methods 

In order to test our pipeline, we used four high-
resolution functional MRI datasets from an ongoing 
spatial navigation study, collected on a 7T MRI Siemens 
Magnetom Terra scanner. 

Subjects were scanned during the course of two 
days. On the first day, an anatomical 3D-MP2RAGE 
(voxel size = 0.75 mm3, TR = 6 s, TE = 0.002 s, TI1 = 
0.8 s, T2 = 2.7 s, FOV = 192 x 255, flip angle = 5°,  no. 
of slices = 340) and TSE (voxel size = 0.44 x 0.44 x 1.5 
mm, TR = 8 s, TE = 0.08 s, FOV = 225 x 225, flip angle 
= 160°,  no. of slices = 40) scans were acquired, 
followed by two functional imaging runs (voxel size = 
0.8 mm3, TR = 2.5 s, TE = 0.03, FOV = 192 x 192, flip 
angle = 14°, no. of slices = 38, acceleration factor = 4 
with GRAPPA reconstruction) and their corresponding 
opposing phase-encoding scans. On the second day, 
four additional functional runs were acquired (same 
parameters as above), giving a total of 6 functional runs 
per subject. 

During the functional runs, subjects had to perform a 
spatial navigation task (Kunz et al., 2015). In short, six 
occluded objects were scattered across a circular 
virtual arena and subjects were instructed to navigate 
to each of them in separate trials (3 repetitions per 
object, giving a total of 18 trials; see Fig. 1). 

Briefly, our workflow initially realigns the functional 
and opposite phase-encoded data and subsequently 
performs distortion correction using ANTs for each run 
in each session. Inter-session alignment is done using 
the corrected run-wise data and the transformation from 
functional to anatomical space is estimated using the 
boundary-based registration (BBR) algorithm (Greve & 
Fischl, 2009) in FSL, as it outperforms typical cost 
functions in data with the signal dropouts and artefacts 
(e.g., in ventral/medial temporal lobes). All matrices 
andwarps are preserved and are concatenated and 
applied in a single resampling step to reduce 
interpolation errors. Motion and QC plots are generated 
using Python. For layer-fMRI analysis, we used 
HippUnfold (DeKraker et al., 2022) to extract 
hippocampal layers (Figure 3) and in-house Matlab 
scripts. 



Results & Discussion 

To evaluate the quality of the inter-session registration 
we calculated two commonly estimated image quality 
metrics for our example participant. First, the structural 
similarity index measure (SSIM) between intra and 
inter-session aligned images was shown to be 0.92 and 
0.87, respectively, which is suggestive of a high-degree 
of similarity between the images (a value of 1.0 
indicates perfect alignment). Similarly, the normalised 
root mean squared error (NRMSE) between the two 
images was 0.041 and 0.065 for intra- and inter-
session, respectively, indicating a very small difference 
between images (a value of 0 indicates perfect 
alignment). 

After preprocessing all subjects using our pipeline we 
proceeded with the analysis of the spatial navigation 
task for the different hippocampal layers (Figure 3). As 
shown in Figure 4, we were able to show that distinct 
navigation strategies were differentially related to 
subregion-specific laminar profiles. 

Using state-of-the-art ANTs functionality, the results 
of this study showed that our proposed pipeline for 
preprocessing ultra high-field resolution fMRI data 
provided a very accurate registration between 
functional and anatomical scan, and a very good 
alignment of the hippocampus over runs, despite the 
relatively small FOV used in the present study. 
Importantly, accurate results were obtained regardless 
of whether registration was performed within sessions 
(on same-day runs) or between sessions (between 
different-day runs), and the resulting preprocessed 
images enabled a meaningful analysis of hippocampal 
laminar activity. 

In sum, our pipeline is a robust and reliable tool to the 
preprocessing of 7T high-res fMRI data, regardless of 
FOV size or number of sessions. Being built as a 
Docker-based containerised pipeline, all software 
dependencies are managed internally, simplifying and 
facilitating its usage, which we believe will appeal to the 
wider neuroscience community. 

Figures 

 

Figure 1:  Overview of the paradigm. Each trial began 
with presentation of a fixation cross. This was followed 

by displaying an object (cue) which subjects had to 
place accurately in its correct location later in the 

retrieval phase. They were asked to imagine the target 
location, navigate, and drop the object. Feedback was 

provided based on drop error (Euclidian distance 

between drop location and the correct location of the 
object). When the object was shown at its correct 

location, they re-encoded it by walking to that location. 
Trials were ended by a second round of imagination. 

Two putative navigation strategies were derived based 
on participants’ movement in the navigation phase i.e., 

straightness index (SI) and median deviation to 
boundary (MDB). 

Figure 2: (a) Example subject with a slab orientation 
discrepancy between scan sessions. The pre-

processed native space output for session 01 (ses-01) 
and session 02 (ses-02) are shown here in orange and 

blue shades, respectively. The hippocampal ROI is 
fully captured in both sessions. (b) White matter 

boundary from T1w data overlaid on the motion- and 
distortion-corrected mean EPI in native space. Arrows 
highlight the hippocampus ROI, and preservation of 
anatomical features after preprocessing in EPI data 

(dark band). 

 

Figure 3: Hippocampal layers after running HippUnfold 

 

 

Figure 4: Straightness Index (direct divided by 
observed path length per trial; SI) positively correlated 

with laminar activity towards to outer bins of CA1, 
while showing a negative linear decrease across the 
laminae of the CA3.  Conversely, Median Deviation 
Boundary (direct minus observed distance per trial; 

MDB) does not seem to vary across depth of CA1 and 
CA3 
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