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Abstract
A patient diagnosed with a neurodegenerative disease of
the visual system like Posterior Cortical Atrophy (PCA) or
Visual Agnosia can have difficulty in recognizing faces,
perceiving boundary shapes, discriminating color, and
reading fragmented images. Computationally modeling
the effects of neurodegeneration on different areas in the
ventral visual stream (V1, V2, V4, and IT), while maintain-
ing the mechanism of neural plasticity in the brain, can
help inform effective rehabilitation strategies for the pa-
tient. To this end, we simulate localized synaptic degen-
eration and neural plasticity using CORnet-S—a deep ar-
tificial model of the brain. We observe that (1) different
areas in the visual cortex have functionally different re-
sponses to tasks such as stimuli processing, shape dis-
crimination, and face perception; and (2) even when a cer-
tain area in the visual cortex is ∼99.85% progressively le-
sioned, the cortex has a remarkable ability to recover task
performance through perceptual learning.
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Introduction
Neurodegenerative diseases of the visual system like PCA
and Visual Agnosia result in disproportionate volume loss in
the occipital and posterior parietal lobes of the biological brain,
with patients having difficulty in performing tasks such as color
discrimination, reading fragmented images, identifying faces,
and perceiving boundary shapes (Milner et al., 1991; Maia da
Silva, Millington, Bridge, & Plant, 2017). Deep artificial neural
networks (ANNs) of the brain have been developed to pre-
dict responses in the healthy ventral stream to much success
(Yamins et al., 2014; Kubilius et al., 2019; Finzi, Margalit,
Kay, Yamins, & Grill-Spector, 2022), although computationally
modeling it under degeneration has been sparse.

In terms of introducing lesions to the whole network, prun-
ing methods abound; these methods aim at improving compu-
tation and storage efficiency by removing filters and/or weights
in either a one-time, atemporal, fashion (Li, Kadav, Dur-
danovic, Samet, & Graf, 2017) or iteratively over time (Han,
Pool, Tran, & Dally, 2015). On the other hand, recent works
have explicitly tried to model and analyze global degenera-
tion of the ventral stream by brain-scoring (Schrimpf et al.,
2018) VGG19 across different lesioning and retraining iter-
ations (Moore, Tuladhar, et al., 2023; Moore, Wilms, et al.,
2023).

A key limitation of these works is that they introduce global
damage to the network. Furthermore, analysis of neurode-
generation in the ventral stream using tasks outside of simple
natural image recognition like CIFAR10 has not yet occurred.
In this paper, we go a step further than all of the above previ-
ous works by asking ourselves how ANNs behave under local-
ized synaptic degeneration of V1, V2, V4, and IT on tasks that
ophthalmologists would usually use to detect visual agnosia,
and what role perceptual learning plays in the process.

Figure 1: Schematic for modeling synaptic degeneration

Methods

We take CORnet-S (Kubilius et al., 2019) as our artificial
model of the brain. We then individually, across separate
experiments, progressively zero-out p = 20% convolution fil-
ter weights of V1, V2, V4, and IT for λ lesioning iterations
(Fig. 1). We train a linear probe using a categorical cross
entropy loss on output from the model’s penultimate layer
to evaluate performance on: (1) Labeled Faces in the Wild
(LFW) (Huang, Ramesh, Berg, & Learned-Miller, 2007) to per-
form face verification (pair matching); and two self-designed
datasets (Fig. 2A)—(2) Pseudoisochromatic (PICo) MNIST,
where each 224x224 image is assigned one of 12 background
colors, evenly distributed across the color wheel, and a digit ∈
{0,...,9} is superimposed onto the colored background, with
the digit color derived by distorting the background color’s
RGB channels randomly; and (3) Noisy Operators, where one
of 5 binary operators (+, −, ×, /, and %) is superimposed
in white on a black background, with anywhere between 0-
50% pixels randomly inverted. To incorporate neural plastic-
ity, after every lesioning iteration, healthy model synapses are
retrained on some fraction of training images from ImageNet
(Deng et al., 2009), while keeping all injured model weights
frozen (no synaptic regeneration occurs).

Figure 2: Localized Synaptic Degeneration without plasticity. A)
Image datasets to test model performance on different tasks. B) Top-
1 test accuracy on different tasks when V1, V2, V4, and IT are indi-
vidually lesioned. Results over 5 runs of 5-fold CV.



Figure 3: Incorporating neural plasticity. A) ImageNet top-1 and top-5 validation accuracy as functions of the fraction of synapses ablated in
V1, V2, V4, and IT, with healthy synapses retrained on 219 training images from ImageNet after every lesioning iteration. B) ImageNet training
accuracy as functions of the number of training images seen by the model during re-learning. C) When V1 is lesioned, we measure how our
model’s second convolution layer in V1 and V2 predict V1 neural responses in the brain (Freeman et al., 2013). D) First convolution layer
filter weights of V1 for healthy and V1-lesioned models. E, F) Features that most activate different filters in V1 and V2 when a model’s V1 is
lesioned. Loss function used is the mean of the output of a specific filter from a specific layer when random uniform noise is fed into the model.

Results
Experiment 1: Modeling localized synaptic
degeneration without neural plasticity
With our initial attempt at modeling degeneration without neu-
ral plasticity, we find that different regions in the ventral stream
have functionally different responses to different tasks. Fig.
2B shows sharp declines in performance for regions that have
a more prominent functional role in a particular task. On PICo
MNIST, the need to discriminate between the luminance of the
background and foreground colors in images across contrast
ratios while remaining color invariant activates visual areas
in the occipital lobe (V1, V2, and V4) more than IT (Baker
& Mareschal, 2001). For shape discrimination in the pres-
ence of noise, as required for the Noisy Operators dataset, V4
and IT are identified, plausibly for their crucial roles in com-
plex feature extraction (Roe et al., 2012) and global shape
detection. However, V1 and V2 quickly follow, highlighting the
importance of integrating information from both low- and high-
level features for shape understanding. On the LFW dataset,
extracting facial features and recognizing faces are found to
be functional roles of V4 and IT, which is consistent with the
presence of the specialized fusiform face area in higher visual
cortex (Kanwisher, McDermott, & Chun, 1997).

Experiment 2: Incorporating neural plasticity
Even when ∼99.85% of a certain region is degenerated, the
model is able to find new information pathways through spared
synaptic connections of V1, V2, V4, and IT and recover task

performance to a great extent (Fig. 3A). This is possible due
to continuous (perceptual) learning; it might have been really
difficult to achieve if there was sudden abrupt injury to the
model instead (Barbot et al., 2021). Furthermore, since a pa-
tient sees far fewer visual stimuli during recovery than what
they see since birth, we experiment with the number of im-
ages we allow the model to train on during recovery. We find
that the model recovers performance with ∼1/128th fraction
of the training images when V1 and V2 are lesioned, and with
∼1/32th fraction when V4 and IT are lesioned (Fig. 3B).

We next analyze how plasticity-induced changes affect dif-
ferent layers in a V1-lesioned model. When scoring the
model’s V1 on neural data in the brain, we see a drop in
V1 predictivity with lesioning that the model never recovers
through re-learning (Fig. 3C). V2, however, maintains its V1
predictivity scores under lesioning, and overtakes V1 at ∼99%
synaptic damage to V1. What happens to the re-learned fil-
ters in V2 when V1 filters stop looking like orientation-selective
gabors under heavy lesions (Fig. 3D)? A healthy model’s V1
and V2 seem to be responding best to edges and textures
respectively (Fig. 3E-F). With lesioning, the receptive fields
that V2 filters respond to start shrinking, with those textured
features decomposing into more simpler edge-like structures,
although not completely similar to what a healthy V1 prefers.
It is perhaps the case that when orientation selective gabors
visually disappear from V1, spared V1 synapses start trans-
mitting stimuli information to V2, which now has the burden of
extracting those low-level edge features that V1 failed to do.
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