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Abstract: 

People routinely make decisions with uncertain 
outcomes. Economists have defined this uncertainty 
about a possible outcome as risk. Previous studies have 
found subcortical neural computations related to reward 
and risk. The prefrontal cortex has also been shown to 
play a role in these computations. Here we present 
evidence of computations underlying reward and risk in 
human prefrontal and temporal cortices. These 
representations may be signatures of Distributional 
Reinforcement Learning, a framework by which the brain 
makes value-oriented predictions and updates those 
predictions to make decisions. 

Keywords: distributional reinforcement learning; value-
based decisions; risk processing; human neuronal 
computation. 

Introduction 

Economists have long-since tried quantifying Risk, Value, 

and Utility and to develop mathematical models that might 

explain or predict human behavior (Glimcher, 2008). These 

models iterated from Pascal’s ideas about Expected Value to 

the development of Prospect Theory (Kahneman and 

Tversky, 1979). This work led to the definition of risk as a 

measurement of uncertainty around a reward (Platt & Huettel, 

2008). Previous work has shown that subcortical 

dopaminergic areas in the brain are the areas responsible for 

computations concerning reward probability (Cohen et al., 

2012; Starkweather & Uchida, 2021). In an effort to elucidate 

the algorithms responsible for reward learning under 

uncertainty, Dabney et al. found a modification to 

Reinforcement Learning that would allow neurons to 

represent a distribution of rewards (Dabney et al., 2020). This 

Distributional Reinforcement Learning (DistRL) was first 

identified in the mouse ventral tegmental area (VTA). More 

recent work has shown that cortical neurons in non-human 

primates (NHPs) also encode a distribution of predictions 

about reward and the associated error of those predictions 

((Muller et al., 2024). Additionally, neuroimaging studies 

have highlighted the anterior insula, dorsal striatum, and the 

noradrenergic system, as areas where reward is encoded 

quadratically (Preuschoff et al., 2006, 2008, 2011). This 

neural encoding is often considered an encoding of risk and 

is distinct from linear encoding of reward (Presuchoff et al., 

2006, 2008, 2011). Here we sought to discover how neurons 

in these areas of humans’ brains represented reward 

probability and uncertainty during risky choices. To do so, 

we measured the activity of single units from human 

neurosurgical patients while they carried out the Balloon 

Analog Risk Task (BART; Lejuez et al., 2002). We 

discovered units that encode reward (linearly), and risk 

(quadratically) as a function of reward probability with a 

majority of those neurons reversing predictive encoding of 

reward probability upon reward outcome. 

 

 
Figure 1: Reward and risk encoding examples. a, mean 

firing rates across the full two-second window and linear fit 

for cue (gray) and outcome (black) -aligned firing for an 

example neuron recorded in MTL. b, same as a, but for 

quadratic fit. An example neuron from MTL. 

 

Methods  

Single neurons were recorded from patients who were 

undergoing neuromonitoring for treatment of drug-resistant 

epilepsy using Behnke-Fried microwires extending from the 

distal tip of two to three of the patients' clinical 

macroelectrodes (Misra et al., 2014). During each BART 

trial, patients press a button to begin inflating a 

computerized balloon. They must push the same button to 

stop the balloon’s inflation. If the inflation is stopped prior 

to the balloon popping, patients receive points linearly 

related to the size of the balloon. If the balloon pops, the 

patients neither receive nor lose any points. BART contains 

both active, wherein the subject is responsible for stopping 

the balloon to get points, and passive trials, wherein the 

balloon automatically inflates to its maximum size. There 

are five reward categories of balloons: gray (unrewarded 

passive trials), yellow, orange, red (rewarded active trials) 

and what are represented as pink (rewarded passive trials). 

The color of balloon, and the presence/absence of an 

indicator of a passive trial cued patients to the potential for 

reward on each trial. Single units were isolated by bandpass 

filtering the signal from the microwires between 0.25 and 

7.5 kHz and sorting waveforms that crossed -3.5 times the 

mean root squared of the filtered signal using Offline Sorter 

(Plexon, Inc.; Dallas, TX). Firing rates were examined in 

two-second windows, 0.25 seconds following the 

appearance of the balloon, and following reward outcome. 

These firing rates were modeled as linear monotonic and 

quadratic functions of reward probability categories using 

generalized linear models and significance was assessed 

using ANOVAs on each model term (Fig 1). Best-order 

polynomials were fit to mean firing rates for each reward 

probability category to visualize reward probability tuning 

curves across local neuronal populations. Finally, the 

reversal point (RP) for each significant unit was calculated 

at cue and outcome. For units that had significant linear 

encoding, the RP was calculated by finding the value of the 

abscissa where the best-fit line crossed the ordinate axis, 
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which represented the reward probability when the unit had 

a normalized firing rate of zero. If a linear model was the 

best fit but the normalized firing rate crossed the threshold 

of zero normalized firing rate more than once, an average of 

the values at which the ordinate axis was crossed was used 

to calculate the RP. For units with significant quadratic 

encoding, the RP was considered the value of the abscissa 

that corresponded to the extrema of the best-fit quadratic. 

Next, the asymmetric scaling for units with significant linear 

encoding of reward probability was calculated. This was 

done in a manner similar to the calculations done in mouse 

VTA as well as NHP cortex where the scaling value that 

was considered was a ratio of positive and negative RPEs 

(Dabney et al., 2020; Muller et al., 2024).  

 

 
Figure 2: Risk encoding examples. a, proportions of 

neurons that significant encode reward probability linearly 

(blue) and quadratically (red) or each of the four brain areas. 

b, fitted cue-aligned mean firing rates across reward 

probability categories for all units in each brain area. c, 

fitted outcome-aligned mean firing rates across reward 

probability categories for all units in each brain area. Gray 

lines in b and c show insignificant best-fits. 

 

Results  

Thirty-two human participants (18 female) carried out a 

mean±s.d. of 234.6±28.9 trials of BART with a mean±s.d 

accuracy of 83.2±6.1. 

We recorded from 334 well-isolated units during the 

BART task. These recordings were grouped into four 

anatomical areas: The Orbitofrontal Cortex (OFC; 83 units), 

The Medial Frontal Cortex (MFC; 39 units), the Anterior 

Cingulate Cortex (ACC; 66 units), and the Mesial Temporal 

Lobe (MTL; 146 units). By fitting generalized linear models 

to the firing rates of these areas, we found significant 

proportions of units that monotonically and quadratically 

encoded reward probability in each of these areas. Across 

units, we found significant encoding of reward probability in 

most brain areas. OFC was the only brain area in which 

significant proportions of neurons were not found to encode 

reward probability at cue (binomial test p > .05) (Fig 2). The 

majority of neurons that significantly predicted the reward 

probability categories in response to the cue, exhibited a 

reversal of their reward probability encoding in response to 

the outcome (60% of units in ACC, 50% in MFC, 74% in 

MTL, and 50% in OFC). Each of the brain areas had 

significant quadratic encoding of reward probability at cue 

and outcome, indicating a significant encoding of risk.  

There are two signatures of DistRL tested in these analyses. 

Firstly, reward-encoding units are expected to have a 

distribution of reversal points, which allows for a range of 

predictions and updated expectations of a reward. The second 

prediction is that these reward-encoding neurons will scale 

reward prediction errors asymmetrically. We found 

correlates of DistRL in both linear and quadratic encoding of 

reward probability, as these reversal points were distributed 

and were not all a single value. For units with significant 

linear encoding of reward probability, we also found diverse 

scaling of reward prediction errors. The ratio of betas for 

positive reward prediction errors and negative prediction 

errors was also widely spread over a non-normal distribution. 

 

 
Figure 3 Signatures of DistRL: a, Distribution of reversal 

points for units when the best fit polynomial of the 

normalized firing rates was linear. b, Distribution of reversal 

points for units the best fit polynomial was quadratic. c, 

Distribution of asymmetric scaling for units that had 

significant linear encoding. 

 

Discussion 

We studied encoding of predicted reward and economic 

risk in single neuron activity recorded from human prefrontal 

and temporal lobes. We found signatures of computations 

that have previously been identified in subcortical structures 

in the human cortex. The majority of these neurons changed 

the direction of encoding following presentation of reward, 

which supports the idea that these neurons also encode 

prediction error, a fundamental variable in Reinforcement 

Learning.  Future work will continue to identify additional 

DistRL signatures like the optimism and pessimism of 

individual units as well as asymmetric learning rates.  
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