
Pruning sparse features for cognitive modeling

Nhut Truong, Uri Hasson
Center for Mind/Brain Sciences (CIMeC), University of Trento

Rovereto, Trento, 38068, Italy
leminhnhut.truong, uri.hasson@unitn.it



Abstract
While deep neural networks are increasingly adopted in
cognitive sciences, they are often computationally expen-
sive and contain irrelevant information for downstream
tasks. In contrast to pruning approaches that aim to
maintain classification accuracy, we present a pruning
method to compress entire models while preserving their
representation geometry. The target representational
space can derived from a neural network or from hu-
man similarity space. Our method involves eliminating
sparse, rarely activated components throughout the en-
tire network architecture, employing both top-down and
bottom-up directions. We show that a deep model’s rep-
resentational space can be preserved or minimally altered
when sparse features are removed, producing a compact
model for network distillation and predicting human simi-
larity judgments. Furthermore, since our method is struc-
tured pruning, it can identify modular structures within
pre-trained models.
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Introduction
Pruning is an important topic in deep learning, where the typ-
ical objective is to compress large models while preserving
their performance. In this work, our first aim is to prune deep
neural networks (DNNs) but using a different objective, which
is maintaining the model’s representational geometry. This
geometry is described by the pairwise distances between ob-
jects in the model’s feature space. Success for this aim is
defined as producing a structurally pruned model where the
original object-to-object distances are maintained. Addition-
ally, our second aim is to extend this method, but when using
the model to approximate an external object-to-object similar-
ity matrix obtained from human similarity judgments (HSJs).
The success of this aim is defined as finding a structurally
pruned version of the original model which approximates a
set of HSJs as well, or better than, the original model.

There are a few benefits of preserving the geometry of the
model’s representations in pruning, from both machine learn-
ing and cognitive science perspective. For instance, it helps
transferring the representations in teacher-student distillation,
in which a larger network exports its knowledge to a smaller
one (Tung & Mori, 2019; Chen et al., 2020). Moreover, align-
ing the model’s representations with those of humans can help
in constructing ecological cognitive models that explain hu-
man similarity space, which is a fundamental cognitive func-
tion that allows people to make sense of the world - from cat-
egorizing objects to forming memories and making decisions
(Battleday et al., 2020; Roads & Love, 2023). More specifi-
cally, achieving these aims by learning sub-parts of the orig-
inal model allows representing human knowledge of different
concepts or domains as masks over an initial model, enabling
flexible model reuse.

In the literature on modeling HSJs, pruning is an effective

method to select a sub-part of the network that not only im-
proves the task performance, but also enhances model in-
terpretability (Tarigopula et al., 2023; Manrique et al., 2023;
Bao & Hasson, 2024; Truong et al., 2024). This approach as-
sumes that pre-trained DNNs have learnt modular structures
where information about different categories is encoded in dif-
ferent sub-spaces in the model, which can be detected via
pruning. Pruning differs from the common practice of utilizing
all features to construct a representational space or adjusting
activations through transformation or re-weighting (Peterson
et al., 2018; Kaniuth & Hebart, 2022; Jha et al., 2023).

Logic of approach
Extensive sparsity has been observed across various deep ar-
chitectures (Blalock et al., 2020; Neill, 2020). Hu et al. (2016)
show it is possible to use the Percent of Zeros (PoZ) metric,
which indicates the tendency of nodes or feature maps to re-
main inactive (zero) for a given set of objects, to guide pruning
while maintaining or improving classification accuracy. Truong
et al. (2023) further showed that PoZ can guide removal of
nodes in the fully connected layer in several models with min-
imally impact the network’s representational geometry, but do
not offer a general approach for pruning the entire network
including feature maps.

In this study, we present a pruning procedure that con-
siders the entire network, where pruning is employed using
two search directions: top-down (deep to shallow layers) and
bottom-up (shallow to deep). This approach allows us to not
only prune the penultimate layer but also earlier layers, such
as convolutional ones, which may have even greater sparsity
(Hu et al., 2016). Beyond producing compact models, an ad-
vantage of this approach is that, it can identify the more impor-
tant feature maps in a given layer, which then allows study-
ing their representations using activation maximization tech-
niques (Erhan et al., 2009; Zeiler & Fergus, 2014).

Aim 1: Pruning to maintain the representational
geometry of the full networks

In this experiment, we used a relatively shallow DNN, LeNet5
(LeCun et al., 1998), trained on two small datasets (MNIST
and CIFAR-10), which is repeated using 50 different weight
initializations of the models. MNIST (LeCun, 1998) con-
tains small grayscale images of 0-9 digits in handwritten form.
CIFAR-10 (Krizhevsky et al., 2009) contains small color im-
ages of 10 object categories. Each model was trained un-
til their accuracy’s on the test sets converges. Then, we
computed Pearson-correlation representational similarity ma-
trix (RSM) from the post-ReLU penultimate activations of the
first 5000 images in the two training sets, resulting in two base-
line matrices, RSM0.

Next, we visit each layer in one network and progressively
remove feature maps (in convolutional layers) or nodes (in fully
connected layers) based on their activation frequency ranking.
We adopted Percentage of Zeros (PoZ), which is the percent-
age of zero activations of a feature across a dataset (Hu et al.,



conv1 conv2 fc1 fc2 CR
Num. of
fmaps/nodes

6 16 120 84

Top-down 5.7 ± 0.5 11 ± 2 67 ± 8 19 ± 2 2.92 ± 0.60
Bottom-up 5 ± 1 10 ± 2 58 ± 9 53 ± 7 3.28 ± 0.76
Jaccard 90 ± 11 91 ± 7 83 ± 10 38 ± 5

Table 1: Results on CIFAR-10 dataset. The Top-down and
Bottom-up row show the number of retained feature maps or
nodes. CR: compression rate.

2016). A network component (feature map or node) with high
PoZ activates less frequently and may contribute less to the
representational geometry (Truong et al., 2023).

Specifically, the pruning procedure is describe as follows.
We traverse through the network one layer at a time. In each
layer, feature maps or node are rank ordered according to
PoZ. Then, we removed components from highest to lowest
PoZ in an accumulated manner. At each step, we compute
the Pearson correlation R2 between RSM0 and the RSM from
the pruned matrix, resulting in the fit between the original and
pruned geometries. This procedure is commonly known as
Representational Similarity Analysis. We prune a component
as long as its removal does not result in a divergence from the
original RSM0, i.e. R2 remains above the pre-defined thresh-
old R2

target . Otherwise, we stop pruning that layer and move to
the subsequent one. Note that the RSMs are always com-
puted from activations propagated to the penultimate layer.
This entire procedure is repeated for every layer, starting from
the first convolutional layer (bottom-up) or the fully connected
penultimate layer (top-down).

The average results of 50 model instances for CIFAR-10
and MNIST are presented in Table 1 and Table 2, respectively.
Overall, the architecture used for CIFAR-10 was compressed
by a factor of 3 and that used for MNIST by a factor of 74,
while maintaining strong similarity with the original represen-
tational space all the time (our target value was R2

target = 0.8).
There is no consistent pattern regarding the number of re-
tained or removed components across the layers. The overlap
of pruned components between the two directions, quantified
by the Jaccard index, is high (i.e. more overlap) for three out
of four layers, except for the penultimate layer (fc2). This dif-
ference may stem from the fact that the fc2 layer in the top-
down approach are removed first, whereas in the bottom-up
approach, they are removed last while the earlier layer’s acti-
vation profile underwent significant changes in the course of
pruning. In conclusion, we find that PoZ can effectively select
a small subset of the model while preserving the representa-
tional geometry. Furthermore, fine-tuning the pruned models
recovered the classification accuracies.

Aim. 2: Pruning to approximate human
representation space

In this experiment, rather than maintaining the representa-
tional geometry of the unpruned network, we assess whether
it is possible to use sparsity to align the representation of a

conv1 conv2 fc1 fc2 CR
Num. of
fmaps/nodes

64 64 256 256

Top-down 44 ± 4 3 ± 2 81 ± 21 30 ± 5 74 ± 43
Bottom-up 33 ± 6 4 ± 2 74 ± 21 89 ± 25 74 ± 41
Jaccard 76 ± 12 89 ± 18 83 ± 10 35 ± 8

Table 2: Results on MNIST dataset.

pruned model with HSJs. The data are kindly provided by
Peterson et al. (2018), in which participants were asked to
rate the similarity of paired images on a scale from completely
dissimilar (0) to identical (10). The algorithm follows the same
steps in Aim 1, with the exception that the threshold is set as
the R2 computed from the RSMs of the unpruned model and
HSJs. In other words, we aim to maintain the representational
space between the full model and human data. To demon-
strate the method, we focused on one dataset from Peterson’s
collection - Animals. We used a VGG-16 model pre-trained on
natural images (Simonyan & Zisserman, 2014).

Examining the results, the top-down pruning approach
compressed 7/15 layers, retaining 4-91% of the components,
while the bottom-up approach compressed 11/15 layers, re-
taining 62-98% of the components. Interestingly, the first
three convolutional layers, which encode low-level visual fea-
tures, remained intact. The threshold R2

target was set at 0.54,
corresponding to the prediction of HSJs from the full model.
Overall, both top-down and bottom-up approaches achieved a
compression rate of 1.6.

We applied activation maximization technique (Lucent
package at github.com/greentfrapp/lucent) to generate im-
ages activating the most for 4 selected components (Figure
1). The pruning method can retain components resembling
animal features (image 1 and 3) while discarding those that
do not (image 2 and 4).

Figure 1: Two left: generated images for the feature maps in
the last convolutional layer with lowest and highest PoZ. Two
right: the same for the nodes in the last fully connected layer.

Conclusion
In this study, we present a method for pruning sparse features
in DNNs to create a sub-network while preserving the rep-
resentational geometry, which is a goal inspired by cognitive
science. The approach is potential for building computational
models of category-selective areas in the brain, such as those
dedicated to faces, words, and so on. Given that our search
method is greedy, future work could involve developing effec-
tive heuristic guidelines to avoid exhaustive searches.
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