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Abstract
Within neuroimaging research, it is a common practice to
perform multiple trials using a single stimulus when work-
ing with noisy modalities such as electroencephalogra-
phy (EEG). For many types of analyses, this practice is
unproblematic. However, when attempting to decode ob-
ject category information from EEG signals (category de-
coding), we show that this practice can lead to a form
of leakage that can inflate a model’s performance when
stimuli are shared across the training and test sets. We
demonstrate this phenomenon by training several exist-
ing EEG decoding models on a dataset of EEG recordings
from human subjects where multiple trials were recorded
for each object within a category. We also develop a sta-
tistical framework to quantify the extent of this leakage.
Our results reveal that per 1% increase above chance in
the category decoding accuracy of a model trained on a
dataset with repeated stimuli, the model’s true general-
ization accuracy only increases by approximately 0.66%.
This raises concerns about the validity of several EEG
category decoding studies, and may have implications for
brain computer interface (BCI) applications being devel-
oped on the basis of these studies.
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Introduction
In neuroimaging studies it is a common practice to present a
stimulus multiple times to a subject in order to reduce noise in
the recorded signals. This practice is particularly common in
electroencephalography (EEG) studies, where the signals are
often noisy, and the signal-to-noise ratio can be improved by
averaging over multiple trials such as in event-related potential
(ERP) studies (Davis, 1939). However, when the analysis be-
ing performed is identifying the category of object observed by
the subject (category decoding), recording multiple trials of a
single object from a category (exemplar) can lead to a form
of leakage when exemplars are shared across the training
and test sets. While the ongoing explosion of studies which
apply machine learning techniques to neuroimaging data has
yielded many promising results, there is a lack of awareness
of this issue within the literature. In this study we demonstrate

both the existence of this phenomenon and develop a sta-
tistical framework to quantify the extent of this leakage. We
apply our framework to several existing EEG category decod-
ing models within the literature which have been trained on a
dataset which features repeated exemplars.

Materials and Methods

The Stanford University Dataset

The Stanford University Dataset (Kaneshiro et al., 2015) is a
dataset of EEG recordings taken from 10 subjects while they
viewed 72 images evenly distributed across 6 categories: Hu-
man Body (HB), Human Face (HF), Animal Body (AB), Animal
Face (AF), Fruit/Vegetable (FV) and Inanimate Object (IO). To
reduce the impact that noise would have on their analysis 72
trials were recorded per exemplar per subject and exemplars
were presented in random order. This gives a total of 5,184 tri-
als per participant. The data was recorded using a 128 chan-
nel EEG system with a sampling rate of 1 kHz. The EEG sig-
nals were then preprocessed using a high-pass fourth-order
Butterworth filter to attenuate frequencies below 1 Hz, and
a low-pass Chebyshev Type I filter to attenuate frequencies
above 25 Hz. Ocular artifacts were removed using the Bell
and Sejnowski (1995) Infomax independent component anal-
ysis algorithm, and finally the data was subsampled to 62.5 Hz
to reduce the computational cost of the analysis. Coinciding
with the publication of their paper the authors also made the
preprocessed data available online.

Literature Review

To establish the extent to which the repeated exemplar leak-
age is present within the published literature, a reverse cita-
tion search was performed on the Stanford University Dataset.
The search returned 19 articles1 which made use of the Stan-
ford University Dataset. These articles were then reviewed

1Ahmadieh et al. (2023); Bagchi and Bathula (2021, 2022); Bobe
et al. (2018); Deng et al. (2023); Fares et al. (2020); Jiao et al.
(2019); Kalafatovich and Lee (2021); Kalafatovich et al. (2020, 2023);
Kaneshiro et al. (2015); Karimi-Rouzbahani et al. (2021); Karimi-
Rouzbahani and Woolgar (2022); Kong et al. (2020); Luo et al.
(2023); McCartney et al. (2022, 2019); Yavandhasani and Ghaderi
(2022); Zheng et al. (2020)



to determine if the dataset was used to train a category de-
coding model, and if so whether their evaluation methodology
was likely to be affected by the leakage. This revealed that
out of 19 studies including the original which made use of the
dataset, 13 were likely affected by the leakage.2

EEG Category Decoding Models

To capture the true effect of the leakage on published re-
sults we selected six of the EEG category decoding models
found in our literature review for use in our experiment. The
models selected were: Linear Discriminant Analysis (LDA)
(Kaneshiro et al., 2015), Wide Convolutional Neural Network
(WCNN) (Bagchi & Bathula, 2021), Attention-Driven Convo-
lutional Neural Network (ADCNN) (Kalafatovich et al., 2020),
EEG Convolutional Transformer (EEG-CT) (Bagchi & Bathula,
2022), Two-stream Convolutional Neural Network (TSCNN)
(Kalafatovich et al., 2023), Reusable LSTM Network (RLN)
(Deng et al., 2023). It should be stated that inclusion of a
model in the analysis does not imply it is believed to be more
likely affected by the leakage, merely that the model descrip-
tions or code provided by the authors were sufficiently detailed
for use in our analysis.

Evaluation Methodologies

To capture the difference in category decoding performance
due to the leakage caused by repeated exemplars we used
two different methodologies to evaluate each model’s accu-
racy. One in which trials relating to each exemplar appear
with equal frequency in the training and test sets (the overlap-
ping methodology), and another in which models are trained
on trials relating to 11 exemplars per category, and then tested
on the remaining exemplars (the disjoint methodology). This
allows us to generate two sets of accuracy results for our mod-
els, the overlapping accuracy which is inflated by leakage, and
the disjoint accuracy which is not. 12-fold cross validation was
used in both methodologies so that under the disjoint method-
ology each exemplar was used in a test set exactly once.

Statistical Framework

To capture the difference in performance, the accuracy re-
sults were aggregated at the subject level for each method-
ology to allow for a direct comparison in their results. The dis-
joint methodology accuracy was then predicted using a linear
mixed model (LMM) with overlapping methodology as a fixed
effect and model architecture and subject as random effects
according to

Yi j = β0 +β1Xi j +ui + v j + εi j

ui ∼ N (0,σ2
u) v j ∼ N (0,σ2

v) εi j ∼ N (0,σ2)
(1)

In this model, Yi j represents the percentage accuracy
above chance without the leakage for each subject and model

2Ahmadieh et al. (2023); Bagchi and Bathula (2021, 2022); Bobe
et al. (2018); Deng et al. (2023); Fares et al. (2020); Jiao et al. (2019);
Kalafatovich and Lee (2021); Kalafatovich et al. (2020, 2023); Luo et
al. (2023); Yavandhasani and Ghaderi (2022); Zheng et al. (2020)

architecture combination. Xi j, the fixed effect, is the percent-
age accuracy above chance when the leakage is present. The
random effects ui and v j capture the variability across sub-
jects and model architectures, respectively. The error term εi j
accounts for the residual variability. The primary term of in-
terest is β1 which explains the expected increase in disjoint
accuracy given a 1% increase in overlapping accuracy.

Results

Table 1 gives a summary of our fitted model. The value fit-
ted for the β1 parameter indicated that per 1% increase above
chance accuracy in a model’s reported accuracy the true gen-
eralization accuracy only increases by 0.6614%. This indi-
cates that there is a significant and systematic difference in
accuracies due to the leakage introduced by sharing exem-
plars across the training and test set. Given that the highest
reported accuracy is approximately 54.28% (Kalafatovich et
al., 2023) this means that the accuracy of some models may
have been inflated by approximately 12.73%.

Additionally, Fig. 1 breaks down the category decoding ac-
curacy by stimulus category and reveals a substantial differ-
ence in performance for each classifier under the two method-
ologies on the individual categories. In particular, it appears
the accuracy of these models is largely driven by the perfor-
mance on the Human Face category. This raises the question
of how feasible it is for a classification algorithm to learn the
representation of a category as contrived as Inanimate Ob-
jects, given only trials relating to 11 exemplars as input. More-
over, it can be seen in the figure that there is a significantly
higher standard deviation in the accuracy of the models under
the disjoint methodology. This suggests that the accuracy of
each of the models is highly dependent on the stimulus pre-
sented. This raises further concerns about the generalizabil-
ity of the models to new stimuli, and the feasibility of applying
such models to BCI applications.
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Table 1: LMM Results Summary

Effect Estimate p-value

Fixed Effects
Disjoint Accuracy 0.6614 2.306×10−14

Random Effects
Variance: Subject 1.4680
Variance: Model 1.4187
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Figure 1: Comparison of accuracy under disjoint vs overlapping exemplar methodologies for each model and category
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