
Behavioral and neural evidence for dynamic model arbitration in  
dorsolateral prefrontal cortex 

 
Jae Hyung Woo (jae.hyung.woo.gr@dartmouth.edu)∗

Department of Psychological and Brain Sciences, Dartmouth College  
Hanover, NH 03755, USA 

 
Michael Chong Wang (chong.wang.gr@dartmouth.edu)∗ 

Department of Psychological and Brain Sciences, Dartmouth College  
Hanover, NH 03755, USA 

 
Ramon Bartolo (ramon.bartoloorozco@nih.gov) 

Laboratory of Neuropsychology, National Institute of Mental Health 
Bethesda, MD 20892, USA 

 
Bruno B. Averbeck (averbeckbb@mail.nih.gov) 

Laboratory of Neuropsychology, National Institute of Mental Health 
Bethesda, MD 20892, USA 

 
Alireza Soltani (alireza.soltani@dartmouth.edu) 

Department of Psychological and Brain Sciences, Dartmouth College  
Hanover, NH 03755, USA 

 
 

 

 
∗ Equal contribution 

 



Abstract 
One of the hallmarks of higher cognitive function is the 
ability to link outcomes to relevant features of the envi-
ronment, while ignoring the irrelevant features. This is 
especially relevant for learning and decision making un-
der uncertainty, where any features or attributes of a se-
lected option can be predictive of rewards. It has been 
suggested that the brain tackles such uncertainty by run-
ning multiple internal models of the environment and ar-
bitrating among them based on their reliability. To reveal 
the neural mechanisms underlying this dynamic arbitra-
tion process, we carried out high channel count record-
ings in dorsolateral prefrontal cortex (dlPFC) while mon-
keys performed a probabilistic reversal learning task 
with multiple layers of uncertainty. By fitting choice be-
havior with models based on reinforcement learning, we 
found evidence for dynamic, competitive interaction be-
tween stimulus-based and action-based learning strate-
gies. dlPFC was involved in arbitration in two ways: (1) 
arbitration weight was represented in the activity of 
dlPFC neurons; (2) only the relevant information for the 
currently adopted strategy was encoded congruently as 
the monkey’s subsequent choice. These results suggest 
that dlPFC could be crucial for flexible arbitration be-
tween alternative models of the environment. 

Keywords: decision-making, reinforcement learning; cog-
nitive control; dorsolateral prefrontal cortex  

Introduction 
One of the most challenging aspects of learning in 

naturalistic settings is that it is inherently uncertain 
which features of the environment are predictive of re-
wards. To form an appropriate decision, the brain must 
select and learn from only the relevant features of a 
choice option or a preceding action, while suppressing 
signals from irrelevant ones. It has been suggested that 
the brain tackles such uncertainty by running multiple 
internal models of the environment, each predicting out-
comes based on different attributes of choice options, 
and using the reliability of these predictions to select the 
appropriate model to inform choice behavior (Soltani & 
Koechlin, 2022; Averbeck & O’Doherty, 2022).  

To reveal the neural mechanisms underlying this ar-
bitration, we studied the choice behavior of monkeys 
performing a probabilistic reversal learning task with un-
certainty about the correct model of the environment. 
We constructed multiple models based on reinforce-
ment learning (RL) to fit choice behavior on a trial-by-
trial basis. We also investigated neural signals related 
to arbitration in dlPFC, which is known to encode both 
task-relevant and irrelevant variables (Seo et al., 2007; 
Donahue et al., 2013; Donahue & Lee, 2015; Tsutsui et 
al., 2016) as well as inference about the current state of 
the environment (Genovesio et al., 2005; Bartolo & 
Averbeck, 2020).  

Methods 
Two rhesus monkeys performed a variant of two-armed 
bandit task. On a reversal trial, the reward probability 

for the better and worse option (70/30%) flipped 
(Fig.1A). Critically, unbeknownst to the monkeys, the 
reward assignment for a given block was either stimu-
lus- (What) or action-based (Where). In What blocks, 
rewards were assigned based on stimulus identity. In 
Where blocks, rewards were assigned based on the 
chosen location, regardless of objects appearing on 
that side. Two block types were randomly interleaved 
throughout the session. Neural population activity was 
recorded with eight Utah arrays implanted bilaterally in 
area 46 (Fig.1B), resulting in a total of 6132 recorded 
cells across eight recording sessions. 

Analysis of behavioral and neural data 
To estimate the strategy used for each block, we ran 
logistic regression on choice behavior. To reveal neural 
mechanism underlying arbitration, we also tested multi-
ple reinforcement learning (RL) models and used five-
fold cross validation to compare goodness of fit.  

Two-system RL with reliability-based arbitration. 
We considered a hybrid RL model consisting of two 
value functions, VStim and VAction, to simultaneously track 
the values of stimuli and actions. Decision value (DV) 
for each side (left or right) was computed by combining 
two value functions with arbitration weight 𝜔𝜔 as follows:  

𝐷𝐷𝑉𝑉𝑖𝑖  = 𝑉𝑉𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆(𝑖𝑖)𝜔𝜔 + 𝑉𝑉𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖𝐴𝐴𝐴𝐴(𝑖𝑖)(1 − 𝜔𝜔), 
where 𝑉𝑉𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆(𝑖𝑖) indicates the value of stimulus appearing 
on side i (left or right) for a given trial. At the end of every 
trial, 𝜔𝜔  values (ranging [0, 1]) were updated as: 
𝜔𝜔(𝑡𝑡 + 1) = 𝜔𝜔(𝑡𝑡) + 𝜓𝜓|𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥|�𝐼𝐼 − 𝜔𝜔(𝑡𝑡)� + 𝜉𝜉�𝜔𝜔0 − 𝜔𝜔(𝑡𝑡)�, 

where Δ𝛥𝛥𝛥𝛥𝛥𝛥 = 𝑉𝑉𝐶𝐶,𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆(𝑡𝑡) − 𝑉𝑉𝐶𝐶,𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖𝐴𝐴𝐴𝐴(𝑡𝑡)  is the difference 
in reliability between two systems on each trial, defined 
as the value of chosen options (𝑉𝑉𝐶𝐶) in each system. 𝜓𝜓 is 
the arbitration rate, 𝐼𝐼 indexes update direction for 𝜔𝜔 (1 
if Δ𝛥𝛥𝛥𝛥𝛥𝛥>0, or 0 otherwise), 𝜔𝜔0 is the initial 𝜔𝜔 on the first 
trial of a block, and 𝜉𝜉 is the decay rate in 𝜔𝜔 toward its 
initial value. An alternate definition of reliability signal 
with Δ𝛥𝛥𝛥𝛥𝛥𝛥 = |𝛥𝛥𝑅𝑅𝐸𝐸𝐴𝐴𝐴𝐴𝑆𝑆𝑖𝑖𝐴𝐴𝐴𝐴(𝑡𝑡)| − |𝛥𝛥𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑖𝑖𝑆𝑆(𝑡𝑡)| was also 
tested. We also considered an alternate model without 
dynamic arbitration, fitting a fixed value of 𝜔𝜔 for every 
block. All models included separate learning rates for 
rewarded and unrewarded trials, decay for unchosen 
option, an inverse temperature, and a side bias term.  

Linear regression analysis. We used a linear regres-
sion model to investigate single-unit activities in dlPFC, 
in 50ms bins time-locked to cue onset. The predictors 
included: currently/previously chosen image or location, 
current/previous reward outcomes, previously re-
warded image or location, current position of images, 
and location of previously chosen or rewarded image. 
These terms were nested within the adopted strategy 
type, consisting of three levels (“action-dominant,” 
“mixed,” “stimulus-dominant”) as inferred through tertile 
split of dynamic 𝜔𝜔 values from the RL model. Namely, 



trials with lower 𝜔𝜔 values toward 0 were categorized as 
“action-dominant”, while those with higher 𝜔𝜔 toward 1 
were categorized as “stimulus-dominant.” This allowed 
us to study the relationship among the regressors by 
monkey’s adopted strategy. The regression also in-
cluded the main effects of 𝜔𝜔 and its distance from max-
imum uncertainty (|𝜔𝜔-0.5|) as continuous predictors. 

Figure 1: (A) Schematic of the task and different block 
types. (B) Location of eight microelectrodes arrays. (C) 
Coefficients for logistic regression by block types. (D) 
Five-fold cross-validation of RL models. 
 

Results & Discussion 
We first examined logistic regression coefficients for 
win-stay/lose-switch (WSLS) and choice repetition (CR) 
terms on either chosen image or location (Fig.1C). We 
found that WSLS and CR for images were larger during 
What blocks, while those for location were larger during 
Where blocks (two-sample t-test, P<.001). That is,  
monkeys overall adopted appropriate stimulus-based 
(action-based) strategy for What (Where) blocks.  

Next, we compared the fit of choice behavior among 
the RL models. Mean negative log-likelihoods from 100 
unique cross-validation instances are shown in Fig.1D. 
Note that the baseline models that only learn the values 
of either stimuli (#1) or actions (#2) were insufficient to 
explain monkeys’ choice behavior. In comparison, the 
two-system RL with fixed arbitration weight (#3) signifi-
cantly improved the fit. Adding dynamic arbitration com-
ponent to the model further improved the fit. Importantly, 
reliability signal based on the value of chosen option (#5) 
better captured the arbitration process than that based 
on the magnitude of reward prediction error (#4).  

Using the estimated dynamic arbitration weights 𝜔𝜔 
from the best model (#5), we next examined the regres-
sion on dlPFC activities. Critically, we found evidence 
for encoding of 𝜔𝜔 values (and also |𝜔𝜔-0.5|) significantly 

above the chance level of 5% (binomial test, P<.001; 
Fig.2A). Population activities also reflected encoding of 
other task-related variables from the current trial 
(Fig.2B), previous trial (Fig.2C), and their interactions 
(Fig.2D).  

To examine the neural signature of arbitration and its 
effect on choice behavior, we next observed the rela-
tionship among regressor coefficients (200ms after cue 
onset) by adopted strategies. We found that regression 
coefficients for previous and current chosen location 
were significantly correlated for action-dominant 
(Spearman’s, P<.001; Fig.2E, blue) but not for stimu-
lus-dominant trials (Fig.2E, red). Conversely, regressor 
for the location of previously chosen image was highly 
correlated with chosen location during stimulus-domi-
nant trials (Fig.2F, red). In other words, neurons that 
increased activity when previously chosen image was 
on the right also tended to increase their activities when 
rightward choice was made. In contrast, the two regres-
sors were negatively and weakly correlated during ac-
tion-dominant trials (Fig.2F, blue). These results sug-
gest that only the relevant information for the currently 
adopted strategy was encoded in the same population 
subspace as the monkey’s subsequent choice.  

Together, our results illustrate behavioral and neural 
signatures of dynamic arbitration between stimulus- 
and action-based strategies. In particular, dlPFC neu-
rons directly encoded arbitration weight 𝜔𝜔, and showed 
aligned encoding of choice according to the current 
strategy in use as signaled by 𝜔𝜔. Thus, dlPFC may be 
critical for flexible switching between competing models 
of the environment. 

Figure 2: (A-D) Fraction of significant neurons (P<.05) 
for each regressor. (E-F) Congruent coding of current 
choice location with previous choice (E) or location of 
previously chosen image (F) by dominant strategy.  
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