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Abstract
Extracting time-varying latent variables from computa-
tional cognitive models is a key step in model-based neu-
ral analysis, which aims to understand the neural cor-
relates of cognitive processes. To derive latent vari-
ables, researchers typically fit computational models with
likelihood-dependent techniques such as Maximum Like-
lihood Estimation. However, many relevant cognitive
models have intractable likelihood, limiting our ability to
use these models for analyses. Here, we present an ap-
proach to learn a direct mapping between time-series ex-
perimental data and the targeted latent variable space us-
ing recurrent neural networks trained to recover latent
variable sequences in synthetic data. The results show
that our approach reaches high accuracy in inferring la-
tent variables in both tractable and intractable models.
Furthermore, the approach is generalizable across dif-
ferent computational models and can identify both con-
tinuous and discrete latent spaces. Overall, our work
suggests that using neural networks trained on synthetic
data to analyze experimental data is a promising way to
access a broader class of cognitive models in model-
based neural analyses.
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Introduction
Computational cognitive models are widely used to relate de-
rived time-varying latent variables to neural data (Cohen et al.,
2017). Model variables provide a quantitative, trial-by-trial pre-
dictor of neural activity, allowing researchers to explore the un-
derlying computational processes and individual differences
(Katahira & Toyama, 2021). For instance, Reward Prediction
Errors (RPEs) extracted from a reinforcement learning model
have been found to correlate with BOLD activity in the ven-
tral striatum, as well as phasic activity of dopamine neurons
(O’Doherty, Hampton, & Kim, 2007).

Extracting time-varying latent variables from experimental
data typically necessitates two steps: model fitting to iden-
tify the best-fitting parameters; and running the computational
model with the best-fitting parameters to obtain the latent vari-
able sequences. In the first model fitting step, likelihood-
dependent methods such as Maximum Likelihood Estimation
(MLE) or Maximum a Posteriori (MAP) are commonly used.
However, these methods fall short for models with intractable
likelihood (Rmus, Pan, Xia, & Collins, 2023). When deal-
ing with models with intractable likelihood, researchers usu-
ally have to develop complex and customized statistical ap-
proaches that are not generalizable to broader computational
models (Ashwood et al., 2022).

Most computational models with intractable likelihoods can
be simulated. Recently, a variety of simulation-based meth-
ods (Busetto Alberto et al., 2013) have taken advantage of
this attribute to overcome the hurdle in likelihood computa-
tion. Specifically, methods leveraging artificial neural networks

(ANN) to estimate posterior probability (Radev, Mertens, Voss,
Ardizzone, & Köthe, 2020) or generative parameters (Lenzi,
Bessac, Rudi, & Stein, 2023) have successfully enabled pa-
rameter recovery across a wide range of computational mod-
els. However, these simulation-based methods are primar-
ily concerned with parameter recovery or model identifica-
tion. Time-varying latent variables extraction in likelihood in-
tractable models is still under-explored (Schumacher, Bürkner,
Voss, Köthe, & Radev, 2023). Here, we propose an ANN-
based method for learning a direct mapping between a se-
quence of observable variables and the targeted latent vari-
able space, using simulations to train our ANN. We show that
our resulting tool is useful in a variety of computational mod-
els and can identify both discrete and continuous latent model
variables.

Methods
The proposed method consists of two phases: training and in-
ference (Fig. 1). During the training phase, we first create a
synthetic dataset using the targeted computational model and
parameter priors. This synthetic dataset includes the model
behavior (similar in structure to what participants’ observable
behavior would be), and model latent variables (which are un-
observable in participants’ data). An ANN is trained using
model-simulated observable behavior as input and a series of
model-derived latent variables as output. During the inference
phase, the trained ANN is supplied the experimental data as
input, resulting in a sequence of inferred unobservable latent
variables.

Note that our technique does not require large data sets
and can be applied at the individual level with standard num-
ber of trials. This is because the neural network training
is done not on real data-sets, but on synthetic data-sets, of
which we can have an arbitrarily large number as needed for
training.

Figure 1: Overview of our proposed ANN-based method

Network Architecture
The basic building block of our neural networks is a recur-
rent neural network (RNN) (Funahashi & Nakamura, 1993)
followed by Multilayer Perceptrons (MLPs). The RNN can be



seen as a time-series representation learner that generates
an embedding for each time point. Our RNN is based on 193
bidirectional Gated Recurrent Units (GRU) (Cho et al., 2014).
Bidirectionality enables the network to learn embeddings from
both past and future history (Schuster & Paliwal, 1997). Fol-
lowing the RNN, MLPs learn the direct mapping between time-
series embeddings and the targeted variable space. MLPs
consisted of two hidden layers with 95 and 48 units, respec-
tively. We use the rectified linear unit (ReLU) activation func-
tion in all MLP layers.

The proposed approach’s adaptability allows us to iden-
tify both discrete and continuous latent variables with minor
changes to the final activation and loss functions. For dis-
crete variables, we used a softmax activation function in the
output layer, with a cross-entropy loss as the objective func-
tion. For continuous variables, we used linear activation with
mean-squared error loss.

Results

All results in this study were evaluated against previously un-
seen testing data. Overall, our approach performed well in
both likelihood tractable and intractable models.

Likelihood Tractable Models We first simulated 5000 par-
ticipants with 500 trials per participant using a 4-parameter
reinforcement learning model (4-P RL) on a two-armed ban-
dit with probabilistic reversal task (Zou, Muñoz Lopez, John-
son, & Collins, 2022). This synthetic data was used to train an
ANN model to predict chosen Q-value sequences. The trained
model and MLE were evaluated against an additional 1000
simulated participants. We obtained RPEs by subtracting Q-
values from the received rewards at each time point (Fig.
2A). We calculated the Root Mean Squared Error (RMSE) be-
tween true and estimated Q-values in all trials and averaged it
across participants. We found the ANN reaches similar aver-
age RMSE (0.041) to MLE (0.042) in likelihood tractable mod-
els (Fig. 2B).

Likelihood Intractable Models We tested our approach us-
ing two likelihood intractable models: a model based on the
generalized linear model and hidden Markov models (GLM-
HMM) in a perceptual decision making task (Ashwood et al.,
2022), which provides a benchmark method in a likelihood in-
tractable context, and a Hierarchical reinforcement learning
model (HRL) in a novel dynamic decision making task (Rmus
et al., 2023), in which no benchmark method exists. Both
models’ training data included 3000 simulated participants
and 720 trials per participant. All evaluations across methods
were conducted on an additional 1000 simulated participants.

The GLM-HMM model’s synthetic dataset was based on a
mouse binary perceptual decision-making task. The model
was trained to predict three discrete latent states: engaged,
biased-left, and biased-right. To assess performance, we
used a balanced accuracy score that is the macro average
of recall per state label and avoids score inflation in an im-
balanced dataset. We compared our approach to the ap-

Figure 2: Latent variable identification results across models.
A) Derived RPE from one simulated participant in 4P-RL B)
Average RMSE of Q-values in 4P-RL C) Latent state identifi-
cation in GLM-HMM D) Latent cue/arrow identification in HRL
E) Derived RPE from one simulated participant in HRL

proximate expectation–maximization (EM) algorithm used in
Ashwood et al. (2022). The results showed the our method in-
creased identification accuracy by 4.8% in average(Fig. 2C).

Finally, we tested our method with the HRL model on a hier-
archical reinforcement learning task. In this task, participants
are shown three arrows, each pointing either right or left. Par-
ticipants learned which arrow to follow and press right or left
for rewards. The HRL model tracks the Q-values of arrows
and decides which one to follow based on Q-values. Because
the arrow chosen by the participant is non-observable (only
the right or left choice is), this model likelihood is intractable (
see (Rmus et al., 2023) for further task details). We trained the
model to identify the arrow that simulated participants covertly
follow and its corresponding Q-values. Our model reaches
93% accuracy in latent discrete cue identification (arrow se-
lection; Fig. 2D) and the RMSE across agents is 0.119 in
Q-values identification (Fig. 2E).

Conclusion
In this work, we show that our method performs well even
when the likelihood is intractable. Our method is adaptable to
both discrete and continuous latent variable identification, as
well as generalizable across different computational models.
To evaluate our method further, our ongoing work includes real
data fitting and robustness tests (e.g. misspecified parameter
priors). In conclusion, breaking down the barrier of intractable
likelihood and recovering the latent dynamics of computational
models will provide researchers with new insights into pre-
viously inaccessible relations between behavioral and neural
data.
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