
ReAlnet: Achieving More Human Brain-Like Vision via 
Human Neural Representational Alignment 

 
Zitong Lu (lu.2637@osu.edu) 

Department of Psychology, The Ohio State University 
Columbus, OH 43210 USA 

 
Yile Wang (yile.wang@utdallas.edu) 

Department of Neuroscience, The University of Texas at Dallas 
Dallas, TX 75080 USA 

 
Julie D. Golomb (golomb.9@osu.edu) 

Department of Psychology, The Ohio State University 
Columbus, OH 43210 USA 

  



Abstract: 

Despite advancements in artificial intelligence, object 
recognition models still lag behind in emulating visual 
information processing in human brains. Recent studies 
have highlighted the potential of using neural data to 
mimic brain processing; however, these often rely on 
invasive neural recordings from non-human subjects, 
leaving a critical gap in understanding human visual 
perception. Addressing this gap, we present, for the first 
time, ‘Re(presentational)Al(ignment)net’, a vision model 
aligned with human brain activity based on non-invasive 
EEG, demonstrating a significantly higher similarity to 
human brain representations. Our innovative image-to-
brain multi-layer encoding framework advances human 
neural alignment by optimizing multiple model layers 
and enabling the model to efficiently learn and mimic 
human brain’s visual representational patterns across 
object categories and different modalities. Our findings 
suggest that ReAlnet represents a breakthrough in 
bridging the gap between artificial and human vision, 
and paving the way for more brain-like artificial 
intelligence systems. 
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Introduction 

While current vision models in artificial intelligence 
(AI) are advanced, they still fall short of capturing the 
full complexity and adaptability inherent in the human 
brain's information processing. Deep convolutional 
neural networks (DCNNs) have reached a performance 
level in object recognition that rivals human capabilities 
(Lecun et al., 2015), and many studies have identified 
representational similarities in the hierarchical structure 
between DCNNs and the ventral visual stream (Cichy 
et al., 2016; Güçlü & van Gerven, 2015; Kietzmann et 
al., 2019; Lu & Golomb, 2023; Yamins et al., 2014). 
However, the current alignment between DCNNs and 
human neural representations, while promising, still 
presents significant opportunities for further exploration 
and enhancement.. Enhancing the resemblance 
between visual models and the human brain has 
become a critical concern for both computer scientists 
and neuroscientists. 

How can we leverage our understanding of the 
human brain to enhance current AI vision models? 
Previous models have limitations in emulating the 
complexity of the human brain’s visual information 
processing, even with increased model depth and 
layers (Rajalingham et al., 2018). Researchers have 
attempted various strategies to improve AI models, 
including altering the model’s architecture (Bai et al., 
2017; Choi et al., 2023; Finzi et al., 2022; Han & 
Sereno, 2022; Kar et al., 2019; Kietzmann et al., 2019; 

Kubilius et al., 2019; Lee et al., 2020; Lu et al., 2023; 
Spoerer et al., 2017; Sun et al., 2017; Tang et al., 2018) 
and changing the training task (Konkle & Alvarez, 2022; 
O’Connell et al., 2023; Prince et al., 2023). However, 
limited studies have focused on directly using neural 
responses to complex visual information as feedback to 
improve the model’s  similarity to human brains. 

Can we directly use human brain activity to align 
ANNs on object recognition and achieve more 
human brain-like vision models? Several recent 
studies have begun to let models learn neural 
representations, obtained from animal invasive neural 
recordings (mouse V1, monkey V1 or IT) (Dapello et al., 
2023; Federer et al., 2020; Li et al., 2019; Pirlot et al., 
2022; Safarani et al., 2021). 

Here, we propose a more human brain-like vision 
model, ReAlnet, effectively aligned with human brain 
representations obtained from EEG recordings, based 
on a novel and effective encoding-based multi-layer 
alignment framework. Our representational alignment 
framework allows us to obtain personalized vision 
models by aligning with individuals’ neural data. 
Moreover, the human brain-aligned ReAlnet shows 
improved similarity to human brain representations 
across different modalities (both human EEG and fMRI) 
and human behavior. 

Methods 

In this study, our core focus is to investigate whether 
aligning the model with individual human neural data 
can enhance the model’s similarity to the human brain.  

Alignment framework (ReAlnet training) 

We applied a novel image-to-brain multiple-layer 
encoding alignment framework which lets the model not 
only accurately classify the object category, but also 
generate realistic EEG signals via minimizing both 
classification and generation losses during the training 
(Figure 1A). Based on this alignment framework, we 
build ten individual ReAlnets, using the state-of-the-art 
CORnet-S model (Kubilius et al., 2018, 2019) as the 
foundational architecture. Each ReAlnet, which has the 
same architecture as CORnet, is additionally trained on 
a real human subject’s EEG signals, recorded while 
viewing a massive number of natural images from 
THINGS EEG2 (Gifford et al., 2022) training set. 

Similarity measurement (ReAlnet testing) 

EEG similarity: We employed an independent test 



dataset consisting of 200 images and associated EEG 
activity from the THINGS EEG2 test set. These test set 
images had not been presented at all during the training 
process, coming from entirely novel (untrained) object 
categories. For models (ReAlnet and COrnet), we input 
these 200 images to each model and obtain the feature 
vectors corresponding to each image for each layer in 
the model. Then we calculated the temporal similarity 
between different models and human brain EEG based 
on the representational similarity analysis (RSA) 
method. 

fMRI similarity: Similar to EEG, we then evaluated the 
model's similarity to human brain fMRI representations 
(a completely different modality) from human subjects 
viewing novel image categories based on Shen fMRI 
(Shen et al., 2019) test set. 

Behavioral similarity: We measured the similarity 
between the model and human behavior in several 
object recognition tasks using the Brain-Score platform 
(Schrimpf et al., 2020) based on two behavioral 
benchmarks. 

Results 

Compared to state-of-the-art CORnet, ReAlnet shows 
significantly higher similarity to human EEG neural 
dynamics for all visual layers when tested on novel 
images (Figure 1B). Notably, ReAlnet also produce 
significantly higher similarity to human brain patterns 
measured with fMRI (Figure 1C). Importantly, ReAlnet 
model representations are also significantly more 
similar to human behavior than original CORnet (Figure 
1D). These results suggest that ReAlnet effectively 
learns not just the patterns of EEG data, but the brain's 
internal processing patterns of visual information. This 
leads to ReAlnet exhibiting a higher similarity than the 
original CORnet not only to within-modality EEG but 
also to cross-modality fMRI and behavior. 

Conclusion 

Our study transcends traditional boundaries by 
employing a groundbreaking alignment framework that 
pioneers the use of human neural data to achieve a 
more human brain-like vision model, ReAlnet. 
Demonstrating significant advances in bio-inspired AI, 
ReAlnet not only aligns closely with human EEG and 
fMRI but also exhibits hierarchical individual variabilities 
and increased similarity to human behavior, mirroring 
human visual processing. We hope that our alignment 
framework stands as a testament to the potential 
synergy between computational neuroscience and 
machine learning and enables the enhancement of any 
AI model to be more human brain-like, opening up 

exciting possibilities for future research in brain-like AI 
systems. 

 

Figure 1: (A) An overview of ReAlnet alignment 
framework. Adding an additional multi-layer encoding 
module to an ImageNet pre-trained CORnet-S, the 
outputs contain the category classification results and 
the generated EEG signals. Using THINGS EEG2 
training dataset, we aim to minimize both classification 
loss and generation loss, enabling CORnet to not only 
stabilize the classification performance but also 
effectively learn human brain features and transform 
into ReAlnet. (B) Representational similarity time 
courses between human EEG and models for different 
layers respectively. Black square dots at the bottom 
indicate the timepoints where ReAlnet vs. CORnet were 
significantly different (p<.05). Shaded area reflects 
±SEM. (C) Representational similarity between models 
and human fMRI of five different brain regions based on 
one subject viewing natural images in Shen fMRI 
dataset. Asterisks indicate significantly higher similarity 
of ReAlnet than that of CORnet (p<.05). Each circle dot 
indicates an individual ReAlnet. (D) Similarity between 
models and human behavior based on the Brain-Score 
platform. Each circle dot indicates an individual 
ReAlnet. Asterisks indicate significantly higher similarity 
of ReAlnet than that of CORnet (p<.05). 
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