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Abstract
What we see and hear carry different physical properties,
but our brain can integrate distinct information to form
a coherent percept. However, when real-world audiovi-
sual events are perceived, the specific brain regions and
timings for processing and integrating different levels of
information remain less investigated. To address that, we
curated naturalistic videos and recorded fMRI and EEG
data when participants viewed videos with accompany-
ing sounds. We found the acoustic information was rep-
resented not only in auditory areas but also in early vi-
sual regions, suggesting the early cross-modal interac-
tion and its role in combining acoustic features with vi-
sual features. However, the visual information was only
represented in visual cortices, indicating that the early
cross-modal interaction is asymmetrical. The visual and
auditory features were processed with similar onset but
different temporal dynamics. The high-level categorical
and semantic information was identified in high-order and
multi-modal areas and resolved later in time, demonstrat-
ing the late cross-modal integration and its distinct role in
converging conceptual information. We further compared
the neural representations with a two-branch deep neural
network model and observed the mismatch in early cross-
model interaction, suggesting the need for improvement
to build a more biologically plausible model for audiovi-
sual perception.

Keywords: Audiovisual Perception; Naturalistic Stimuli; Com-
putational Models; Neural Representations and Dynamics

Introduction
Most visual scenes are associated with sounds. Thus, when
we perceive them, two types of information are processed
through different sensory channels and cerebral cortices, but
eventually our brain is able to integrate the physically distinct
information and create a coherent percept (Stein & Mered-
ith, 1993; Ernst & Bülthoff, 2004). The cross-modal integra-
tion is observed in many brain regions including primary sen-
sory areas and high-level cortical areas (Schroeder & Foxe,
2005; Ghazanfar & Schroeder, 2006). However, what func-
tional roles each brain area plays during integration is still not
well understood.

Many previous studies on audiovisual integration used sim-
ple stimuli like flash/tones (Shams, Kamitani, & Shimojo, 2000;
Rohe & Noppeney, 2015; Cao, Summerfield, Park, Giordano,

& Kayser, 2019) or image/sound pairs (Laurienti et al., 2003;
Werner & Noppeney, 2010; Franzen, Delis, De Sousa, Kayser,
& Philiastides, 2020), which are easy to manipulate the exper-
imental conditions but lack ecological relevance. Therefore,
the neural basis underlying the perception of real-world au-
diovisual events remains less investigated. To address that,
we employed naturalistic video stimuli with sounds and aimed
to investigate how different types of information are processed
in the brain and across time with fMRI and EEG data as well
as computational models.

Results

We curated 60 one-second videos with matching visuals
and sounds for categories of animals, objects, and scenes.
We recorded fMRI and EEG data separately while subjects
(N=22) viewed the videos with accompanying sounds with an
orthogonal oddball detection task to maintain their attention.
Each video was presented 11 times for fMRI and 12-15 times
for EEG.

Figure 1: Experiment and data analysis scheme.

After data preprocessing, we extracted fMRI and EEG pat-
tern responses and constructed representational dissimilarity
matrices (RDMs) for an fMRI voxel searchlight or an EEG time
point using Pearson correlation distance. We used different
computational models to capture low-level visual and acous-
tic features (GIST descriptors (Oliva & Torralba, 2001) and
Cochleagram model (Brown & Cooke, 1994)) and high-level
categorical and semantic features (GloVe word embeddings
(Pennington, Socher, & Manning, 2014)). We also tested a



two-branch audio-video deep neural network (DNN) model
(Morgado, Vasconcelos, & Misra, 2021) and evaluated its sim-
ilarity to the brain.

Early asymmetrical cross-modal interaction in early
visual cortex and late integration in high-level areas

We found that the low-level visual areas showed significant
correlations with the low-level visual model representations
and the strength of the correlation decreased along the visual
hierarchy (Figure 2). The low-level acoustic model correlated
best with neural representations in the early auditory cortex,
but also correlated with representations in the early visual cor-
tex. This suggests the early cross-modal interaction in which
auditory information is integrated as early as in V1. However,
such interaction is not bidirectional, with no visual information
represented in auditory regions.

Figure 2: Subject-averaged significant partial correlation map
between fMRI searchlight RDMs and model RDMs (1000 sign
permutation test with cluster correction, cluster-definition p <
0.001, cluster p < 0.01).

As shown in Figure 3, the correspondence between EEG
and visual model representations became significant at 55 ms
and first peaked at 99 ms. The low-level acoustic feature rep-
resentation emerged at 67 ms and first peaked at 92 ms, close
to the first visual peak, suggesting that visual and acoustic
information are processed almost simultaneously. The maxi-
mum peak for the auditory model was 193 ms, later than the
maximum peak of the visual model at 133 ms, implying that
the extraction of salient information from sounds may require
more accumulated time than visual scenes.

The categorical and semantic information was mainly rep-
resented in high-order and multi-modal association areas, in-
dicating their role in converging the high-level conceptual infor-
mation. The categorical information emerged at 160 ms with
a peak at 194 ms. The semantic representation was resolved
with similar dynamics, with onset at 187 ms and peak at 232
ms. Together, we identified the role and timing of both early
and late cross-modal interactions.

Figure 3: Adjusted explained variance was used as the cor-
respondence measure when non-negative linear regressions
were fitted between EEG time-channel RDMs and model
RDMs. The bottom lines denote significant time windows
(1000 sign permutation test with cluster correction, cluster-
definition p < 0.001, cluster p < 0.01).

A two-branch audiovisual deep neural network
captures the hierarchical processing, but not the
early cross-modal interaction

We compared the neural representations with a two-branch
audiovisual deep neural network (Morgado et al., 2021), which
has a similar structure of separate visual and auditory cortices
(Figure 4). The model was trained on Audioset (Gemmeke
et al., 2017) through contrastive training to learn cross-modal
agreement of video and audio.

Figure 4: (A) Schematic illustration of a two-branch DNN
model (Morgado et al., 2021) trained on audio-video stim-
uli with contrastive learning. (B) Model representations of
seven blocks of each branch were extracted and compared
with fMRI RDMs (1000 sign permutation test with cluster cor-
rection, cluster-definition p < 0.001, cluster p < 0.01). The
best correlated model layer was visualized on the whole-brain
map.

We observed that the model exhibited modality correspon-
dence and hierarchical progression: early layers correlated
with early regions, while later layers correlated with higher-



level regions. However, some voxels in early visual areas
correlated best with early layers of the audio model, suggest-
ing the model fails to capture the early cross-modal interac-
tion. Therefore, including early integration in the DNN model
is needed to build a more biologically plausible computational
model and potentially improve model performance (Mo & Mor-
gado, 2023).

Conclusion
In summary, our results revealed the spatiotemporal dynamics
of information processing during the perception of naturalistic
audiovisual stimuli and suggested two stages of cross-modal
interactions with distinct roles. We also provided insights on
how to build a more biologically plausible model of audiovisual
processing.
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