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Abstract
The relationship between activity patterns in response to dif-
ferent conditions provides important insights into the compu-
tations occurring in a brain area. To fully characterize the rep-
resentational geometry, it is often desirable to establish the
correlation between two activity patterns (or between two rep-
resentational hyper-planes), independent of the size of the ac-
tivation. Traditional point-estimates of correlation coefficients
between patterns are biased and not suited for inference. This
is especially true for functional magnetic resonance imaging
(fMRI) data, which is corrupted by substantial measurement
noise. Here we propose a Bayesian approach, which approx-
imates the posterior distribution of the correlation coefficient.
This approach allows valid inferences, both when comparing a
correlation coefficient against a fixed value (one-sample prob-
lem), as well as comparing two correlation coefficients across
two different regions or groups of subjects (two-sample prob-
lem). The utility of the approach is demonstrated through the
reanalysis of a number published imaging studies.
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Introduction
How much do two brain activity patterns overlap? This ques-
tion arises quite often in neuroimaging studies - for example
when trying to establish to what degree two tasks engage
overlapping or distinct neural processes. It is easy to establish
whether two activity patterns correlate more with each other
than chance. This can be simply accomplished by testing a
set of correlation coefficients against zero. However, in the
presence of substantial measurement noise, it is difficult to
estimate the true size of the correlation coefficient (Fig. 1a).

The problem also occurs in multi-voxel pattern analysis
(MVPA), where we may want to determine whether the dif-
ferences between multiple items (i.e., different hand actions,
arranged on a representation hyper-plane, Fig. 1b) are rep-
resented similarly across two conditions (e.g., observation vs.
execution). By training a classifier on one condition and then
testing it on the other, one can easily establish whether the
representation in one condition holds any information about
the other. However, the exact degree of the similarity between
the representations (i.e., the angle between two representa-
tional hyper-planes) is difficult to estimate.

A typical frequentist approach (as taken in representational
similarity analysis, RSA) is to derive corrected point-estimates
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Figure 1: a. Basic case: determine the true correlation be-
tween two activity patterns from noisy measurements of each
pattern. b. More complex case: determine the angle between
two hyper-planes (gray planes) that distinguish between items
(a-d) under two conditions (X,Y))

for the correlation for each subject, and then use inter-subject
variability (or bootstrap) to obtain variability measures for in-
ference. We show here that these approaches start to fail
quickly when signal-to-noise is low, as is often the case in
fMRI. Instead we suggest a Bayesian approach to estimate
the posterior distribution of the correlation coefficient from
single-subject or group data, allowing for valid inference.

Methods and Results
Problem definition
We assume that the true activity patterns in the two condi-
tion (x,y) are normally distributed vectors with P voxels, and
variance of s2

x and s2
y . We have N independent measures

D = {x1,y1, ...,xN ,yN} each corrupted with N(0,σ2) noise.
In general we are interested in the true correlation (or, when
not subtracting the mean value across voxels, the true cosine
similarity) between the two activity patterns:

r =
xT y/P√

s2
xs2

y

A simple estimate can be obtained by plugging the esti-
mated mean activity patterns (x̄, ȳ) into Eq. 1. However, it has
long been known (Spearman, 1987) that this estimate (Fig.
2a, gray dashed) underestimates the true correlation:
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Cross-block estimation. We can attempt to correct for this
bias by using the measurements of x and y from different
measurement blocks (which we assume are independent) to
estimate the noise and signal variances and then correct the
correlation estimate (Beaton et al., 1979). This procedure is
similar to the procedure by which one can obtain unbiased
distance estimates in RSA (Walther et al., 2016).

This estimator (Fig. 2a , blue line), however, has three un-
desirable features that make it unsuited for testing hypotheses
of interest. (1) At low signal-to-noise levels (as typical in fMRI)
the estimate of signal variance often becomes negative, forc-
ing us to exclude many participants for inference. (2) The bias
is not completely removed. (3) The estimates have very high
variance, as it is not bounded between [−1,1].

Maximum-likelihood estimator. Using pattern-component
modelling (PCM) (Diedrichsen, Yokoi, & Arbuckle, 2018), we
can also derive an estimator of r that maximizes the data like-
lihood p(D|r,s2

x ,s
2
y ,σ

2). This estimator is identical to the trun-
cated (on [-1,1]) cross-block estimator. While much better be-
haved (Fig. 2a, red line), the estimator still shows substantial
bias for typical noise levels of multivariate fMRI studies.
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Figure 2: a. Mean correlation estimates for a true correlation
of r = 0.7 depending on signal-to-noise ratio. Pearson cor-
relation: gray dashed line; Cross-block estimator: blue line;
Maximum-likelihood estimate: red line. Shaded area indicates
SEM for 20 participants (not shown for cross-block estimate,
as they are too big). b. Approximate posterior distribution for a
single dataset with r = 0.7 (red) and r = 1.0 at a log signal-to-
noise of −2 (blue). The 95% highest posterior density interval
is indicated by the shaded area.

The Bayesian solution

Given the inadequacies of frequentist approaches to provide
robust inference, we propose here to apply a Bayesian ap-
proach: Using a uniform prior on the correlation and Jef-
frey’s prior on the variance parameters (p ∝ σ−2), we can ap-

proximate the posterior distribution across all parameters us-
ing Markov-chain Monte-Carlo (MCMC) sampling. To enforce
the [-1,1] bounds, sampling is performed in a fisher-z trans-
formed correlation space, where the corresponding prior is
p ∝ (1− r2). To enable group inference, MCMC is performed
on a single model for the entire group of participants, using a
common correlation parameter across participants, but sepa-
rate signal and noise variance parameters.

One-sample problem. To test hypotheses about the size of
correlation coefficients, we can approximate the marginal pos-
terior using kernel-density estimation in fisher-z transformed
space, which can then be transformed into the original space
on the interval of [−1,1]. This smoothed interval allows us
to construct the 95% highest posterior density interval for the
correlation coefficient (Fig. 2b).

In contrast to the central credibility interval (or an inter-
val obtained by bootstrapping of the maximum-likelihood es-
timate), this confidence interval contains the correlation pa-
rameter of the true model with approximately the correct fre-
quency across most noise and correlation levels.

Two-sample problem. The two-sample problem occurs
when we compare correlations across two brain regions or
two groups of subjects that have different signal-to-noise lev-
els. We can approach this problem by sampling separate pos-
terior distribution for both groups, and then compute the prob-
ability that r1 > r2 across any pairs of samples. Compared
to the strongly biased inference using the maximum-likelihood
estimate when the noise levels in the two samples differ, this
approach leads to broadly correct inferences.

Discussion

An emerging principle in neural coding is that related pro-
cesses share some overlap in terms of their neuronal states,
but also have some differences in other dimensions. Such
mixed encoding ensures that knowledge can be transferred
from one condition to another while still allowing learning sep-
arate rules if necessary (Bernardi et al., 2020). The true angle
between two representational hyper-planes (Fig. 1b) therefore
becomes an important quantity to characterize the capacity of
a region for common vs. separate encoding. Here we estab-
lish a robust Bayesian methods to estimate and obtain cred-
ibility interval for this statistics from data that contains sub-
stantial measurement noise. We demonstrate the feasibility of
the approach through a re-analysis of published multi-variate
fMRI studies (Ariani, Pruszynski, & Diedrichsen, 2022; Berlot,
Prichard, O’Reilly, Ejaz, & Diedrichsen, 2018). The proposed
models and inference procedure are implemented in a new
version of the PCM toolbox (Diedrichsen et al., 2018).
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