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Abstract
Humans categorize visual information based on features
of different complexity. While some tasks require high-
level information, others rely on low-level cues. This
raises the question of how these features, originating
from different parts of the visual system, are integrated
for perceptual decisions. Here, we test three potential
mechanisms: single readout, direct access, and atten-
tional routing. The mechanisms were implemented and
contrasted based on ANN models, equipped with differ-
ent readout strategies. These networks were trained to
perform two tasks that require access to low or high-level
visual features, respectively, and subsequently evaluated
in terms of performance and their ability to predict human
reaction times of participants performing the same tasks.
We found that the direct access and attentional routing
models performed as well as humans in both tasks, while
the single readout model did not perform well. Impor-
tantly, the attentional routing model best predicted hu-
man reaction times overall. These results indicate that
neither a readout only from high-level visual cortex nor
direct access to upstream regions might be sufficient to
explain human categorization behavior across tasks, and
suggest attentional modulations along the ventral visual
stream as a critical mechanism that enables flexible read-
out through high-level visual cortex.
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Introduction
Human categorization behavior is based on visual features of
different complexity, represented at distinct hierarchical stages
along the ventral visual stream (Grill-Spector & Weiner, 2014;
Op de Beeck, Haushofer, & Kanwisher, 2008). According to
task demands, different feature representations must be ac-
cessed and transformed into behavior. What computational
mechanism enables such flexible readout of task-relevant fea-
ture representations in the ventral visual stream?

One account posits that a linear readout from the final
processing stage in the visual system, the inferior temporal
(IT) cortex, is sufficient to account for categorization behavior
across various tasks (Cohen, Alvarez, Nakayama, & Konkle,
2017; Majaj, Hong, Solomon, & DiCarlo, 2015). This view is in
line with work showing that low-level visual features such as
color, rotation, and pose can be decoded from IT in addition to
category information (Hong, Yamins, Majaj, & DiCarlo, 2016).

In contrast, behaviorally relevant feature representations
have been identified in distinct stages along the ventral vi-
sual stream (Contier, Baker, & Hebart, 2023; Singer, Kara-
petian, Hebart, & Cichy, 2023; Yeh, Thorat, & Peelen, 2024),
suggesting that readout might directly access multiple stages.
This view is supported by computational evidence for the func-
tional relevance of readouts from earlier stages in the ventral
stream before IT cortex (Birman & Gardner, 2019; Jagadeesh
& Gardner, 2021).

A third possibility is that visual information is not directly ac-
cessed from early visual regions, but is locally modulated via
attention (Gilbert & Li, 2013; Thorat, Aldegheri, van Gerven, &
Peelen, 2019), and this altered code is passed on for subse-
quent readout from IT. Theories of feature-based attention, as
well as recent advances in incorporating top-down attentional
mechanisms in deep neural network models, support the view
that attention may be a key component of visual categoriza-
tion (Konkle & Alvarez, 2024; Lindsay & Miller, 2018; Thorat,
van Gerven, & Peelen, 2019).

We contrasted these three readout hypotheses by express-
ing them in artificial neural network (ANN) models. We trained
the models on two tasks requiring access to either low- or
high-level visual features. To compare the models, we as-
sessed their task performance and ability to predict the be-
havioral responses of humans performing the same tasks.

Methods
Neural network architectures and training.
We developed three ANN architectures, each expressing a
different hypothesis about the readout from the ventral visual
stream (Fig. 1): 1) readout only from IT (i.e. Single Read-
out), 2) direct access to all stages in the ventral stream (i.e.
Direct Access), and 3) attentional modulations with a readout
from IT (i.e. Attentional Routing). All architectures share an
AlexNet backbone (Krizhevsky, Sutskever, & Hinton, 2012),
pre-trained on ILSVRC2012 (Russakovsky et al., 2015), with
frozen backbone parameters during subsequent model train-
ing. For task-specific readout, all models feed into a linear

Figure 1: Neural network architectures expressing different
readout mechanisms.



embedding layer which is multiplicatively modulated by a task
context layer. The linear embedding layer feeds into a binary
classification layer.

The Single Readout model feeds from AlexNet fc7 into the
linear embedding layer. The Direct Access model projects all
feature channel outputs (averaged across spatial dimensions)
for each convolutional block into the linear embedding layer
- each layer projects into a distinct and equal subset of the
layer. In the Attentional Routing model the feedforward pass
through the base architecture is modulated with multiplicative
feature-based attention (attention layers in Fig. 1) based on
the task (Lindsay & Miller, 2018). After the feedforward pass,
the network projects from fc7 into the linear embedding layer.

The projection from the fully connected layers in AlexNet
into the linear embedding layers was regularized with dropout
(p = 0.5) for all models. The training dataset consisted of
segmented objects on random texture backgrounds with col-
ored outlines. Objects were segmented and outlined using the
segmentation masks and images from MSCOCO (Lin et al.,
2014) and placed on random texture backgrounds retrieved
from https://github.com/abin24/Textures-Dataset.
All models underwent interleaved training on two tasks: con-
tent classification (animate vs. inanimate) and color classifi-
cation (red outline vs. blue outline). All results are averages
across model instances trained with 5 random seeds.

Behavioural experiment
We collected reaction times and accuracies from 29 partici-
pants for the same tasks the networks were trained and eval-
uated on. In each trial, a participant was presented with
one of 120 segmented object images (from the test set of
the network (Fig. 2A) with colored outlines for 200ms (half
animate/inanimate, half red/blue outline) and was instructed
to either report if the object was inanimate/animate or had a
blue/red outline in separate blocks.

Results
To contrast different hypotheses of the readout from the ven-
tral visual stream, we compared ANN models expressing
these hypotheses in terms of task performance on a high-
level content task and low-level color task, and in terms of
their alignment with human behavioral responses in the same
tasks. Since the number of units in the embedding layers is
a key hyperparameter in the models, serving as the informa-
tional bottleneck before classification, we trained all models
with different sizes of the embedding layers (from 10-40 in
steps of 10) to assess the robustness of the results. For the
content task, we found that all models performed similarly well
(pair-wise p = 0.990, McNemar test, FDR-corrected) and bet-
ter than humans (pair-wise p < 0.001, one-sided t-test, FDR-
corrected) across all embedding sizes. For the color task, both
the Direct Access as well as the Attentional Routing models
outperformed the Single Readout model (pair-wise p < 0.006,
McNemar test, FDR-corrected) and only the Single Readout
model performed worse than humans (p < 0.001, one-sided
t-test, FDR-corrected).

Figure 2: A) Example stimuli from the test set. B) Task perfor-
mance and reaction time correlations with varying embedding
layer size for different readout models. Error bars represent
the standard error of the mean across 29 human participants.

Next, we compared the models in terms of their alignment
with human behavior by correlating the image-specific output
of the classifier layer (p(animacy) or p(color), depending on
the task) with the corresponding reaction times for both tasks.
A 3-way ANOVA with the factors “Task”, “Model” and “Em-
bedding Size” comparing the correlations revealed a signifi-
cant main effect of “Task” and of “Model” (both p < 0.030),
but no significant two or three-way interactions between the
factors (all p > 0.077). Therefore, we averaged correla-
tions across embedding sizes and tasks and performed pair-
wise tests between models (FDR-corrected). This revealed
significantly stronger negative correlations for the Attentional
Routing model than the Direct Access model (p = 0.018),
marginally stronger negative correlations for the Attentional
Routing compared to the Single Readout model (p = 0.055),
but no significant difference between the Single Readout and
Direct Access models (p = 0.882).

Conclusion
By contrasting three potential mechanisms of task-dependent
readout from the ventral visual stream, we gained two main in-
sights. First, readout from the final stage of processing is not
sufficient to account for human performance in a color cate-
gorization task that requires sensitivity to low-level visual fea-
tures. Second, even though direct access to low-level visual
features improves performance, it does not explain human re-
action times better than readout from the final stage of pro-
cessing. A model that reads out from the final stage of pro-
cessing and, additionally, allows for attentional modulation of
the feedforward pass performs at a human level in both tasks
and explains human reaction times better than the other two
models. In sum, this suggests that readout from the final pro-
cessing stage is not sufficient for explaining human behavior
across tasks, and that task-specific attentional routing, com-
bined with readout from the final stage of processing, might
support task-dependent human categorization behavior.
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