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Abstract
Alzheimer’s disease (AD) is recognized as a continuum
of cognitive decline with underlying biological changes,
and predicting the disease progression is crucial. Brain
atrophy status obtained from volumetric MRI is pivotal for
assessing disease severity and prognosis during the con-
tinuum, but modelling its longitudinal change and its re-
lationship with the progression has been underexplored.
This study proposes a novel deep learning-based method
that precisely models the atrophy dynamics across 62
cortical and subcortical regions of mild cognitive impair-
ment (MCI) subjects collected from the ADNI database,
followed by a unique training scheme to add the effects of
beta-amyloid protein deposition on atrophy and to model
subject-specific dynamical features. Furthermore, we di-
rectly implement the dynamics into the MCI to demen-
tia conversion prediction task. Our findings demonstrate
the feasibility of modelling atrophy dynamics using deep
learning and suggest that leveraging dynamics represen-
tation (DR) enhances the conversion prediction.
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Introduction
Alzheimer’s disease (AD), the most prevalent form of demen-
tia, is now understood as a continuum spanning a preclinical
AD stage with underlying pathophysiological developments to
stages with severe cognitive decline (Aisen et al., 2017). Mild
cognitive impairment (MCI) due to AD represents an earlier
stage in this continuum, characterised by cognitive deficits
that do not significantly affect daily functioning. Studies indi-
cate that up to 50% of individuals with MCI due to AD progress
to Alzheimer’s dementia within a decade (Liss et al., 2021).
This underscores the importance of accurate progression pre-
diction, particularly in light of recently introduced anti-amyloid
therapies (Van Dyck et al., 2023).

Extensive research has leveraged volumetric MRI to extract
brain atrophy features and construct machine learning mod-
els for predicting disease progression (Y. Chen et al., 2022).
Notably, reduced baseline hippocampal volume and its faster
reduction have been identified as significant risk factors for the
conversion (Tabatabaei-Jafari et al., 2019). Nevertheless, pre-
vious studies have assessed volume changes of different re-
gions independently at a high level, rather than systematically
modelling the interrelated dynamics of atrophy across several
brain regions. This limitation motivates a novel perspective:
viewing brain atrophy as a dynamical system.

In this research, we first introduce an ordinary differential
equation (ODE) with learnable parameters to model the brain
atrophy dynamics and apply a two-stage training scheme to
fit the parameters subject-wisely. Furthermore, we exploit the
dynamics to improve the accuracy of predicting conversion to
dementia by directly implementing them as input features. To
the best of our knowledge, this is the first work to computation-
ally define atrophy rates and elucidate the effects of amyloid
pathology on brain atrophy progression with a neural ODE.

Materials and Methods
Dataset
The study utilised 2,292 3T 3D T1-weighted volumetric brain
MRI scans of individuals with mild cognitive impairment (MCI)
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). All subjects had at least
two years of follow-up MRI data. Subjects were classified as
progressive MCI (pMCI, n = 63, Global CDR score increased
from 0.5 to 1 within 3 years) or static MCI (sMCI, n = 308,
CDR remained 0.5) (Albert et al., 2013). To investigate the
amyloid effect on brain atrophy progression, baseline average
18F-AV45 amyloid positron emission tomography (PET) stan-
dardised uptake value ratios (SUVRs) in the frontoparietal cor-
tices were used (Landau et al., 2013).

Brain Atrophy Dynamics
Atrophy Quantification All MRI scans were registered to
the corresponding subject’s baseline scan initially. We lever-
aged skull stripping and whole brain segmentation algorithms
to obtain volumes of 62 cortical and subcortical regions accu-
rately (C. Suh et al., 2020; P. S. Suh et al., 2023). Then,
the residual intracranial volume adjustment was performed
to minimise volume changes due to head size differences
(Voevodskaya et al., 2014). Finally, by comparing the volumes
to age- and sex-matched cognitively normal (CN) individuals
from the ADNI database, we acquired normative percentile
(NP) values representing the cumulative distribution of Gaus-
sian random variables with mean and variance derived from
the normative data (Figure 1). Hence, lower NP values indi-
cate smaller volumes compared to normal populations, des-
ignating greater atrophy. This procedure effectively quantified
the regional brain atrophy across subjects.

Figure 1: Atrophy Quantification Pipeline for 3D T1 MR Scans:
(1) whole brain segmentation to obtain volumes of 62 cortical
and subcortical regions (2) NPs to rank the subject’s regional
volumes compared to CN population. Examples of computing
bilateral hippocampal atrophies are illustrated.

Modelling the Dynamics We assumed that the longitudinal
NP change since (t0) is governed by the following linear ODE:

dp( j)

dt
= A( j)p( j)+β

( j)a, p(t) = p(t0)+
∫ t

t0
p′(τ)dτ. (1)

Here p( j) represents the NP values of subject j, A( j) is a
subject-specific linear neural representation (LNR) of atrophy
dynamics showing correlations between regions during at-
rophy progression, whose precise definition will be provided



shortly. To consider the beta-amyloid effect on brain atrophy,
the amyloid SUVR term β( j) multiplied by a learnable parame-
ter vector a which is assumed to be constant across subjects.

To derive the LNR A( j), we initially trained the ODE across
all subjects to identify the optimal a. This step accounted for
the variability in sampling timeframes across subjects by ap-
proximating the ground truth NP values as a series of linear
equations that have y-intercept at p(t0) (Figure 2), facilitating
batch-wise training of the ODE. Subsequently, by freezing a
and initializing A( j) by the resulting value from the first stage,
we trained the ODEs on each subject’s NP data to ensure that
A( j)s precisely mirrored individual patterns.

Dementia Conversion Prediction
To evaluate the predictive capacity of the atrophy dynamics
for MCI to dementia conversion, we trained a deep learning
network which utilizes the LNR A( j) and amyloid-beta SUVR
β( j) as input variables (Figure 2). To benchmark our ap-
proach, we established two baseline comparisons: one us-
ing only the amyloid-beta information for classification, and
another using a neural network with baseline normative per-
centile vectors instead of A( j)s. We investigated if the repre-
sentation of atrophy dynamics derived from our method com-
bined with beta-amyloid deposition yields more significant in-
sights into the conversion from MCI to dementia, surpassing
the predictive capabilities of traditional amyloid classification
and approaches relying solely on baseline volumetry results.

Figure 2: A small neural network to predict MCI to dementia
conversion from neural representations of atrophy dynamics.

Results
We leveraged an efficient ODE-solving method from the
Torchdiffeq library (R. T. Q. Chen, 2018) to model the atrophy
dynamics. After the two-stage training, we observed sharper
declines of normative percentiles in pMCI subjects, even if
baseline NPs were similar to those of sMCI subjects, as ex-
pected. Specifically, the right entorhinal cortex, right middle
temporal gyrus, and right inferior parietal gyrus showed sta-
tistically greater (p < .05) decline rates between pMCI and
sMCI patients in terms of the diagonal entries of A( j). Fig-
ure 3 illustrates normative percentiles of those regions. The
large overlapping of NP progression between sMCI and pMCI
groups implies considering atrophy status only could make

distinguishing the conversion group difficult. Also, training the
atrophy dynamics only with the first stage was insufficient to
capture subject-specific atrophy patterns (table 1).

Figure 3: Prediction results of the atrophy dynamics model af-
ter applying the two-stage training scheme. Predicted norma-
tive percentile changes of three different conversion-related
regions of sMCI (blue) and pMCI (red) patients are plotted.

Table 1: Prediction vs Ground Truth Mean Absolute Error

Region Stage 1 Stage 2
right-entorhinal 0.1 0.032
right-middletemporal 0.075 0.03
right-inferiorparietal 0.08 0.032

In the conversion prediction task, using amyloid values
alone yielded high sensitivity but low specificity, implying that
many amyloid-positive MCI subjects did not progress to de-
mentia (table 2). Integrating baseline (Bl) NPs with amyloid
substantially improved specificity at the cost of reduced sensi-
tivity. Sensitivity was recovered with increased AUROC when
the linear neural representations (LNRs) of the atrophy dy-
namics were instead leveraged but reduced specificity.

Table 2: MCI to Dementia Conversion Prediction Results

Model Input Sensitivity Specificity AUROC
Amyloid only1 0.891 0.548 N/A
Amyloid + Bl NPs 0.759 0.735 0.753
Amyloid + LNRs 0.891 0.681 0.780

Conclusion
This study introduced a novel approach to accurately model
brain atrophy dynamics across cortical and subcortical re-
gions in subjects along the Alzheimer’s disease continuum.
Leveraging subject-specific dynamics with amyloid SUVR ac-
curately predicted MCI to dementia conversion. A notable lim-
itation of this work is the assumption of a linear ODE structure,
which may not fully capture the neurodegeneration’s com-
plex, nonlinear nature. Most importantly, the proposed atro-
phy dynamics cannot be modelled without a tracked record of
MRI scans, preventing real-world application of this method.
Hence, considering white matter connectivity obtained from
diffusion tensor imaging at baseline might be desired to con-
struct more robust dynamics. Future research should also
examine integrating tauopathy information or using region-
specific amyloid SUVR instead of the average SUVR to elabo-
rate on how pathophysiological changes lead to regional neu-
ron losses theoretically.

1Cut-off of 1.11 applied (Joshi et al., 2012).
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